植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 139-151.DOI: 10.17521/cjpe.2018.0201
邹显花1,2,胡亚楠1,韦丹1,陈思同1,吴鹏飞1,2,马祥庆1,2,*()
收稿日期:
2018-08-16
接受日期:
2018-12-04
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
马祥庆
基金资助:
ZOU Xian-Hua1,2,HU Ya-Nan1,WEI Dan1,CHEN Si-Tong1,WU Peng-Fei1,2,MA Xiang-Qing1,2,*()
Received:
2018-08-16
Accepted:
2018-12-04
Online:
2019-02-20
Published:
2019-06-04
Contact:
MA Xiang-Qing
Supported by:
摘要:
激素是植物适应逆境的重要信号物质, 从激素调控角度研究植物对养分匮乏环境的适应机制对磷高效营养基因型的选育具有重要意义。该研究通过分析被动忍受型(M1)与主动活化型(M4)两个磷高效利用杉木(Cunninghamia lanceolata)基因型在低磷胁迫下不同处理阶段的激素含量变化规律, 结合根系形态变化、干物质及养分分配规律, 研究磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性。结果表明: 低磷处理下, 磷高效利用杉木M1与M4叶的激素含量与其适应特性之间无相关性, 而根系的激素含量与根系生长显著相关。低磷处理条件下, M1与M4根系中的IAA含量自27 h起表现为大于高磷对照, 且随时间延长呈增加趋势。根系中的IAA含量与根表面积、体积及根长等显著正相关, IAA的增加诱导了根系的增长, M1与M4均表现出一定的根系增长量。其中, M4存在明显的IAA由地上向基部积累的现象, M4的根系增生能力比M1更强。同时, 根系增长促使更多的干物质分配到根系, M4的根冠比在整个处理过程中均高于高磷对照。与IAA相同, M1与M4根系的ABA与GA3含量总体也表现为低磷处理>高磷对照, 但随时间延长, 低磷条件下ABA与GA3的含量呈下降趋势, 二者与根系增长量呈负相关关系。M1与M4根系内的ZT含量在低磷条件下也呈下降趋势, 且逐渐低于高磷对照, 而其与低磷适应特性间并无显著相关性。可见, 低磷胁迫下, 磷高效利用杉木M1与M4根系中的IAA、ABA与GA3含量与其根系形态变化密切相关, 各器官的物质、能量、信息的综合调控是植物适应低磷逆境的重要生存策略。
邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性. 植物生态学报, 2019, 43(2): 139-151. DOI: 10.17521/cjpe.2018.0201
ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress. Chinese Journal of Plant Ecology, 2019, 43(2): 139-151. DOI: 10.17521/cjpe.2018.0201
图2 杉木M1在不同处理时间的内源激素含量比较(平均值±标准偏差)。A, 生长素(IAA)含量。B, 脱落酸(ABA)含量。C, 赤霉素(GA3)含量。D, 细胞分裂(ZT)含量。L-P代表低磷处理, H-P代表高磷对照。不同小写字母表示低磷处理条件下不同处理时间的内源激素含量差异达到显著水平(p < 0.05), 不同大写字母表示高磷对照条件下不同处理时间的内源激素含量差异达到显著水平(p < 0.05)。
Fig. 2 Endogenous hormone contents of Cunninghamia lanceolata M1 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
图3 杉木M4在不同处理时间的内源激素含量比较(平均值±标准偏差)。A, 生长素(IAA)含量。B, 脱落酸(ABA)含量。C, 赤霉素(GA3)含量。D, 细胞分裂(ZT)含量。L-P代表低磷处理, H-P代表高磷对照。不同小写字母表示低磷处理条件下不同处理时间的内源激素含量差异达到显著水平(p < 0.05), 不同大写字母表示高磷对照条件下不同处理时间的内源激素含量差异达到显著水平(p < 0.05)。
Fig. 3 Endogenous hormone content of Cunninghamia lanceolata M4 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
图4 不同磷高效利用杉木在不同处理时间的根系形态变化比较(平均值±标准偏差)。A, M1根长增量。B, M4根长增量。C, M1根表面积增量。D, M4根表面积增量。E, M1根体积增量。F, M4根体积增量。G, M1根平均直径。H, M4根平均直径。L-P代表低磷处理, H-P代表高磷对照。不同小写字母表示低磷处理条件下不同处理时间的根系形态变化差异达到显著水平(p < 0.05), 不同大写字母表示高磷对照条件下不同处理时间的根系形态变化差异达到显著水平(p < 0.05)。
Fig. 4 Root morphological changes of different Cunninghamia lanceolata with different high phosphorus-use efficiency at different sampling periods (mean ± SD). A, Root length increments of M1. B, Root length increments of M4. C, Root surface area increments of M1. D, Root surface area increments of M4. E, Root volume increments of M1. F, Root volume increments of M4. G, Averaged root diameter of M1. H, Averaged root diameter of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
图5 不同磷高效利用杉木在不同处理时间的根冠比比较(平均值±标准偏差)。A, M1的根冠比。B, M4的根冠比。L-P代表低磷处理, H-P代表高磷对照。不同小写字母表示低磷处理条件下不同处理时间的根冠比差异达到显著水平(p < 0.05), 不同大写字母表示高磷对照条件下不同处理时间的根冠比差异达到显著水平(p < 0.05)。
Fig. 5 Root/shoot ratio of different Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Root/shoot ratio of M1. B, Root/shoot ratio of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively.
图6 不同磷高效利用杉木在不同处理时间的磷含量分配比较(平均值±标准偏差)。A, M1地上部分与根系的磷含量分配。B, M4地上部分与根系的磷含量分配。L-P代表低磷处理, H-P代表高磷对照。不同小写字母表示低磷处理条件下不同处理时间的磷含量差异达到显著水平(p < 0.05), 不同大写字母表示高磷对照条件下不同处理时间的磷含量差异达到显著水平(p < 0.05)。
Fig. 6 Phosphorous distribution patterns of Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Phosphorous distribution patterns in the aerial part and roots of M1. B, Phosphorous distribution patterns in the aerial part and roots of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper- case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively.
家系 Clone | 部位 Organ | 供磷处理 Phosphorus supply level | 内源激素 Endogenous hormone | 根体积 Root volume | 根平均直径 Average root diameter | 根表面积 Root surface area | 根长 Root length | 根冠比 Root/shoot ratio | 地上部磷养分含量 P content in the aerial parts | 根磷养分含量 P content in the roots |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 叶片 Leaves | L-P | ABA | -0.159 | -0.161 | -0.186 | -0.306 | 0.289 | 0.313 | 0.103 |
IAA | -0.075 | 0.100 | 0.046 | 0.136 | -0.190 | -0.072 | 0.046 | |||
GA3 | 0.525 | -0.674 | 0.550 | 0.221 | -0.655 | 0.518 | -0.018 | |||
ZT | -0.644 | 0.443 | -0.663 | -0.495 | 0.382 | -0.170 | 0.604 | |||
H-P | ABA | -0.019 | 0.372 | -0.103 | -0.473 | 0.157 | -0.540 | 0.352 | ||
IAA | 0.250 | -0.548 | 0.364 | 0.435 | -0.186 | 0.546 | 0.006 | |||
GA3 | 0.313 | -0.571 | 0.365 | 0.131 | 0.045 | 0.545 | 0.517 | |||
ZT | -0.391 | 0.701 | -0.423 | -0.210 | 0.589 | -0.208 | 0.237 | |||
根系 Roots | L-P | ABA | -0.958** | 0.442 | -0.921** | -0.863* | 0.077 | -0.073 | 0.682 | |
IAA | 0.891** | -0.777* | 0.880** | 0.627 | -0.245 | 0.381 | -0.675 | |||
GA3 | -0.794* | 0.558 | -0.797* | -0.715 | -0.316 | -0.317 | 0.660 | |||
ZT | -0.554 | 0.276 | -0.564 | -0.482 | -0.415 | -0.346 | 0.693 | |||
H-P | ABA | -0.612 | 0.416 | -0.604 | -0.695 | 0.538 | -0.690 | 0.302 | ||
IAA | 0.672 | -0.456 | 0.619 | 0.128 | -0.599 | -0.180 | -0.230 | |||
GA3 | -0.370 | 0.427 | -0.360 | -0.409 | 0.029 | -0.402 | -0.035 | |||
ZT | -0.383 | 0.364 | -0.360 | -0.374 | -0.010 | -0.359 | -0.110 | |||
M4 | 叶片 Leaves | L-P | ABA | -0.106 | 0.430 | -0.205 | -0.170 | -0.258 | -0.167 | -0.602 |
IAA | -0.045 | -0.239 | 0.006 | -0.205 | -0.027 | -0.099 | 0.572 | |||
GA3 | -0.130 | 0.302 | -0.186 | 0.066 | 0.120 | -0.068 | -0.341 | |||
ZT | -0.344 | 0.563 | -0.432 | -0.376 | -0.071 | -0.281 | -0.336 | |||
H-P | ABA | -0.146 | 0.494 | -0.138 | -0.106 | 0.107 | -0.123 | -0.310 | ||
IAA | 0.338 | -0.394 | 0.393 | 0.453 | -0.278 | 0.012 | 0.219 | |||
GA3 | -0.524 | 0.584 | -0.466 | -0.331 | 0.440 | 0.336 | 0.065 | |||
ZT | 0.054 | -0.361 | 0.078 | 0.103 | 0.230 | -0.038 | -0.357 | |||
根系 Roots | L-P | ABA | -0.079 | 0.368 | -0.114 | -0.120 | -0.170 | -0.248 | -0.625 | |
IAA | 0.772* | -0.876** | 0.963** | 0.810* | -0.647 | 0.481 | -0.906** | |||
GA3 | -0.380 | 0.248 | -0.357 | -0.429 | 0.081 | -0.542 | 0.223 | |||
ZT | -0.434 | 0.286 | -0.402 | -0.473 | 0.157 | -0.533 | 0.282 | |||
H-P | ABA | 0.450 | 0.003 | 0.425 | 0.184 | -0.242 | -0.606 | -0.474 | ||
IAA | 0.692 | -0.475 | 0.735 | 0.689 | -0.512 | -0.313 | -0.694 | |||
GA3 | -0.291 | 0.138 | -0.356 | -0.285 | 0.280 | -0.506 | 0.086 | |||
ZT | -0.497 | 0.111 | -0.481 | -0.266 | 0.362 | 0.126 | 0.644 |
表1 不同磷高效利用杉木内源激素与苗木生长特性的相关性分析
Table 1 Correlation between endogenous hormones and growth characteristics of Chinese fir clones with high phosphorus-use efficiency under different phosphorus levels
家系 Clone | 部位 Organ | 供磷处理 Phosphorus supply level | 内源激素 Endogenous hormone | 根体积 Root volume | 根平均直径 Average root diameter | 根表面积 Root surface area | 根长 Root length | 根冠比 Root/shoot ratio | 地上部磷养分含量 P content in the aerial parts | 根磷养分含量 P content in the roots |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 叶片 Leaves | L-P | ABA | -0.159 | -0.161 | -0.186 | -0.306 | 0.289 | 0.313 | 0.103 |
IAA | -0.075 | 0.100 | 0.046 | 0.136 | -0.190 | -0.072 | 0.046 | |||
GA3 | 0.525 | -0.674 | 0.550 | 0.221 | -0.655 | 0.518 | -0.018 | |||
ZT | -0.644 | 0.443 | -0.663 | -0.495 | 0.382 | -0.170 | 0.604 | |||
H-P | ABA | -0.019 | 0.372 | -0.103 | -0.473 | 0.157 | -0.540 | 0.352 | ||
IAA | 0.250 | -0.548 | 0.364 | 0.435 | -0.186 | 0.546 | 0.006 | |||
GA3 | 0.313 | -0.571 | 0.365 | 0.131 | 0.045 | 0.545 | 0.517 | |||
ZT | -0.391 | 0.701 | -0.423 | -0.210 | 0.589 | -0.208 | 0.237 | |||
根系 Roots | L-P | ABA | -0.958** | 0.442 | -0.921** | -0.863* | 0.077 | -0.073 | 0.682 | |
IAA | 0.891** | -0.777* | 0.880** | 0.627 | -0.245 | 0.381 | -0.675 | |||
GA3 | -0.794* | 0.558 | -0.797* | -0.715 | -0.316 | -0.317 | 0.660 | |||
ZT | -0.554 | 0.276 | -0.564 | -0.482 | -0.415 | -0.346 | 0.693 | |||
H-P | ABA | -0.612 | 0.416 | -0.604 | -0.695 | 0.538 | -0.690 | 0.302 | ||
IAA | 0.672 | -0.456 | 0.619 | 0.128 | -0.599 | -0.180 | -0.230 | |||
GA3 | -0.370 | 0.427 | -0.360 | -0.409 | 0.029 | -0.402 | -0.035 | |||
ZT | -0.383 | 0.364 | -0.360 | -0.374 | -0.010 | -0.359 | -0.110 | |||
M4 | 叶片 Leaves | L-P | ABA | -0.106 | 0.430 | -0.205 | -0.170 | -0.258 | -0.167 | -0.602 |
IAA | -0.045 | -0.239 | 0.006 | -0.205 | -0.027 | -0.099 | 0.572 | |||
GA3 | -0.130 | 0.302 | -0.186 | 0.066 | 0.120 | -0.068 | -0.341 | |||
ZT | -0.344 | 0.563 | -0.432 | -0.376 | -0.071 | -0.281 | -0.336 | |||
H-P | ABA | -0.146 | 0.494 | -0.138 | -0.106 | 0.107 | -0.123 | -0.310 | ||
IAA | 0.338 | -0.394 | 0.393 | 0.453 | -0.278 | 0.012 | 0.219 | |||
GA3 | -0.524 | 0.584 | -0.466 | -0.331 | 0.440 | 0.336 | 0.065 | |||
ZT | 0.054 | -0.361 | 0.078 | 0.103 | 0.230 | -0.038 | -0.357 | |||
根系 Roots | L-P | ABA | -0.079 | 0.368 | -0.114 | -0.120 | -0.170 | -0.248 | -0.625 | |
IAA | 0.772* | -0.876** | 0.963** | 0.810* | -0.647 | 0.481 | -0.906** | |||
GA3 | -0.380 | 0.248 | -0.357 | -0.429 | 0.081 | -0.542 | 0.223 | |||
ZT | -0.434 | 0.286 | -0.402 | -0.473 | 0.157 | -0.533 | 0.282 | |||
H-P | ABA | 0.450 | 0.003 | 0.425 | 0.184 | -0.242 | -0.606 | -0.474 | ||
IAA | 0.692 | -0.475 | 0.735 | 0.689 | -0.512 | -0.313 | -0.694 | |||
GA3 | -0.291 | 0.138 | -0.356 | -0.285 | 0.280 | -0.506 | 0.086 | |||
ZT | -0.497 | 0.111 | -0.481 | -0.266 | 0.362 | 0.126 | 0.644 |
[1] |
Alexova R, Millar AH ( 2013). Proteomics of phosphate use and deprivation in plants. Proteomics, 13, 609-623.
DOI URL |
[2] |
Brenner C, Deplus R, Didelot C, Loriot A, Viré E, Smet CD, Gutierrez A, Danovi D, Bernard D, Boon T ( 2005). Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 24, 336-346.
DOI URL |
[3] | Chen BL, Luo J, Jiang PA ( 2016). Effects of different phosphorus concentration on endogenous hormones of cotton. Southwest China Journal of Agricultural Sciences, 29, 1839-1843. |
[ 陈波浪, 罗佳, 蒋平安 ( 2016). 不同磷水平对棉花内源激素的影响. 西南农业学报, 29, 1839-1843.] | |
[4] | Chen J, Zhang YZ, Zhang Q, Shen YO, Gao SB, Tang HT, He WZ, Tan J, Zhang B, Pan GT ( 2013). Dynamic change of endogenous hormones in different maize genotypes under low-phosphorus stress. Journal of Maize Sciences, 21(5), 6-12. |
[ 陈洁, 张永中, 张谦, 沈亚欧, 高世斌, 唐海涛, 何文铸, 谭君, 张彪, 潘光堂 ( 2013). 低磷胁迫下不同基因型玉米内源激素的动态变化. 玉米科学, 21(5), 6-12.] | |
[5] |
Chen ZY, Wu PF, Zou XH, Wang P, Ma J, Ma XQ ( 2016). Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Scientia Silvae Sinicae, 52(2), 57-66.
DOI |
[ 陈智裕, 吴鹏飞, 邹显花, 汪攀, 马静, 马祥庆 ( 2016). 低磷胁迫下杉木幼苗生长特性与内源激素的关系. 林业科学, 52(2), 57-66.]
DOI |
|
[6] |
Chiou T, Lin S ( 2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185-206.
DOI URL |
[7] | Ciereszko I, Kleczkowski LA ( 2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: Hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1579, 43-49. |
[8] | Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG ( 2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant, 2, 43-58. |
[9] | Dong J, Mou P ( 2012). Root nutrient foraging of morphological plasticity and physiological mechanism in Callistephus chinensis. Chinese Journal of Plant Ecology, 36, 1172-1183. |
[ 董佳, 牟溥 ( 2012). 翠菊根系养分捕获形态塑性及其生理机制. 植物生态学报, 36, 1172-1183.] | |
[10] | Franco-Zorrilla JM, Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J ( 2002). Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant Journal, 32, 353-360. |
[11] | Fu YP, Yang Y, Xue JB ( 2005). Influence under low P-deficient stress on endogenous hormone and root activities of dark sun-cured tobacco. Chinese Agricultural Science Bulletin , 21, 227-229. |
[ 符云鹏, 杨燕, 薛剑波 ( 2005). 低磷胁迫对晒红烟内源激素和根系活力的影响. 中国农学通报, 21, 227-229.] | |
[12] |
Fukaki H, Tasaka M ( 2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437-449.
DOI URL |
[13] |
Giehl RFH, Gruber BD, von Wiren N ( 2014). Its time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65, 769-778.
DOI URL |
[14] | Huang RH, Yang HL, Huang W, Lu YM, Chen K ( 2015). Effects of Funneliformis mosseae on endogenous hormones and photosynthesis of Sorghum haipense under Cs stress. Chinese Journal of Applied Ecology, 26, 2146-2150. |
[ 黄仁华, 杨会玲, 黄炜, 陆云梅, 陈珂 ( 2015). 核素铯胁迫下接种摩西球囊霉对宿根高粱内源激素和光合的影响. 应用生态学报, 26, 2146-2150.] | |
[15] | Jiang C, Gao X, Liao L, Harberd NP, Fu X ( 2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145, 1460-1470. |
[16] |
Johnston AE, Poulton PR, Fixen PE, Curtin D ( 2014). Phosphorus: Its efficient use in agriculture. Advances in Agronomy, 123, 177-228.
DOI URL |
[17] | Lai F, Thacker J, Li Y, Doerner P ( 2007). Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Pant Journal, 50, 545-556. |
[18] | Li JH, Chong K ( 2006). Current research advances on polar auxin transport in plant. Chinese Bulletin of Botany , 23, 466-477. |
[ 李俊华, 种康 ( 2006). 植物生长素极性运输调控机理的研究进展. 植物学通报, 23, 466-477.] | |
[19] | Li K, Xu CK, Yang A, Zhang J ( 2010). Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 7, 1501-1512. |
[20] | Li YK (1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing. |
[ 李酉开 (1989). 土壤农业化学常规分析方法. 科学出版社, 北京.] | |
[21] | Liu H, Wang SG ( 2003). Influences of P deficiency stress on endogenous hormones in Barley. Journal of Southwest Agricultural University, 25, 48-51. |
[ 刘辉, 王三根 ( 2003). 低磷胁迫对大麦内源激素的影响. 西南农业大学学报, 25, 48-51.] | |
[22] | Liu HC, Kuang YH, Chen RY ( 2003). Changes of IAA contents in different Asparagus Bean cultivars under phosphorus- deficient stress. Plant Physiology Communications, 39, 125-127. |
[ 刘厚诚, 邝炎华, 陈日远 ( 2003). 缺磷胁迫下不同长豇豆品种幼苗中IAA含量的变化. 植物生理学报, 39, 125-127.] | |
[23] | Martin AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, de La Pena A, Leyva A, Paz-Ares J ( 2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal, 24, 559-567. |
[24] | Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N ( 2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934-11939. |
[25] |
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM ( 2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology, 155, 1000-1012.
DOI URL |
[26] | Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W ( 2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment, 30, 85-112. |
[27] | Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P ( 2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138, 2061-2074. |
[28] | Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra- Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L ( 2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 20, 3258-3272. |
[29] |
Postma JA, Lynch JP ( 2011). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107, 829-841.
DOI URL |
[30] |
Radin JW, Parker LL, Guinn G ( 1982). Water relations of cotton plants under nitrogen deficiency: V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiology, 70, 1066-1070.
DOI URL |
[31] |
Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas- Triana M, Paz-Ares J ( 2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69, 361-373.
DOI URL |
[32] |
Sakakibara H ( 2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449.
DOI URL |
[33] | Shao LM, Hao B (1986). Plant Hormones. People’s Education Press, Beijing. |
[ 邵莉楣, 郝斌 (1986). 植物激素. 人民教育出版社, 北京.] | |
[34] | Shen Y, Zhang Y, Lin H, Gao S, Pan G ( 2012). Effect of low phosphorus stress on endogenous hormone levels of different maize genotypes in seedling stage. Journal of Biological Sciences, 12, 208-314. |
[35] | Sheng WT, Fan SH (2005). Long-term Productivity of Chinese fir Plantations. Science Press, Beijing. |
[ 盛炜彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.] | |
[36] | Shi CJ, Liu Y, Jing T ( 2006). Review on stress-resistance of phytohormone. World Forestry Research, 19(5), 21-26. |
[ 师晨娟, 刘勇, 荆涛 ( 2006). 植物激素抗逆性研究进展. 世界林业研究, 19(5), 21-26.] | |
[37] | Shi T, Zhao D, Li D, Wang N, Meng J, Xu F, Shi L ( 2012). Brassica napus root mutants insensitive to exogenous cytokinin show phosphorus efficiency. Plant and Soil, 358, 57-70. |
[38] | Sun HG, Zhang FS ( 2000). Growth response of wheat roots to phosphorus deficiency. Acta Botanice Sinica , 42, 913-919. |
[ 孙海国, 张福锁 ( 2000). 小麦根系生长对缺磷胁迫的反应. 植物学报, 42, 913-919.] | |
[39] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecologigal Applications, 20, 5-15.
DOI URL |
[40] | Wei XW, Gou C, Xu MZ, Xu HW, Zhou XF ( 2013). Study on the improvement of HPLC method for analyzing endogenous hormone in Maize. Journal of Maize Sciences, 21, 144-148. |
[ 未晓巍, 勾畅, 徐民泽, 徐洪伟, 周晓馥 ( 2013). 高效液相色谱法测定玉米内源激素方法的改进研究. 玉米科学, 21, 144-148.] | |
[41] | Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW ( 2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260-1271. |
[42] | Wu PF, Ma XQ ( 2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica , 29, 427-437. |
[ 吴鹏飞, 马祥庆 ( 2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.] | |
[43] |
Wu PF, Ma XQ, Tigabu MT, Wang CW, Liu AQ, Oden PC ( 2011). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 41, 228-234.
DOI URL |
[44] | Wu PF, Wang GY, El-Kassaby YA, Wang P, Zou XH, Ma XQ ( 2016). Solubilization of aluminum-bound phosphorus by root cell walls: Evidence from Chinese fir, Cunninghamia lanceolata(Lamb.) Hook. Canadian Journal of Forest Research, 47, 419-423. |
[45] |
Wu PF, Wang GY, Farooq TH, Li Q, Zou XH, Ma XQ ( 2017). Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: Does neighboring root activity aggravate P nutrient deficiency? Journal of Soils and Sediments, 17, 2775-2785.
DOI URL |
[46] | Wu PF, Zang GZ, Ma XQ ( 2006). Advances in the mechanism of chemical communication of plants under stress. Subtropical Agriculture Research , 2, 271-277. |
[ 吴鹏飞, 臧国长, 马祥庆 ( 2006). 逆境中植物化学通讯机制的研究进展. 亚热带农业研究, 2, 271-277.] | |
[47] | Xiong GS, Li JY, Wang YH ( 2009). Advances in the regulation and crosstalks of phytohomones. Chinese Science Bulletin, 54, 2718-2733. |
[ 熊国胜, 李家洋, 王永红 ( 2009). 植物激素调控研究进展. 科学通报, 54, 2718-2733.] | |
[48] |
Yamagishi M, Zhou K, Osaki M, Miller SS, Vance CP ( 2011). Real-time RT-PCR profiling of transcription factors including 34 MYBs and signaling components in white lupin reveals their P status dependent and organ-specific expression. Plant and Soil, 342, 481-493.
DOI URL |
[49] |
Yang CC, Huang QJ, Su XH ( 2013). Correlation between endogenous IAA, ABA contents and height growth of black poplar at the seedling stage. Scientia Silvae Sinicae , 49(8), 35-42.
DOI |
[ 杨成超, 黄秦军, 苏晓华 ( 2013). 内源激素IAA和ABA含量与黑杨苗期高生长关系. 林业科学, 49(8), 35-42.]
DOI |
|
[50] | Yuan Y, Huang LQ, Lü DM, Mao Y, Fu GF ( 2008). Effect of low pH on endogenous hormones and root development in Chinese medicine Atractylodes lancea(Thunb.) DC. Chinese Pharmaceutical Journal, 43, 101-104. |
[ 袁媛, 黄璐琦, 吕冬梅, 毛莹, 付桂芳 ( 2008). 低pH对苍术根组织内源激素水平和生长发育的影响. 中国药学杂志, 43, 101-104.] | |
[51] |
Zou XH, Wei D, Wu PF, Zhang Y, Hu YN, Chen ST, Ma XQ ( 2018). Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 32, 897-912.
DOI |
[52] |
Zou XH, Wu PF, Chen NL, Wang P, Ma XQ ( 2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
DOI URL |
[53] | Zou XH, Wu PF, Jia YY, Ma J, Ma XQ ( 2016). Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizer, 22, 1056-1063. |
[ 邹显花, 吴鹏飞, 贾亚运, 马静, 马祥庆 ( 2016). 杉木根系对不同磷斑块浓度与异质分布的阶段性响应. 植物营养与肥料学报, 22, 1056-1063.] |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[5] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[6] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[7] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[8] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[9] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[10] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[11] | 陈思同, 邹显花, 蔡一冰, 韦丹, 李涛, 吴鹏飞, 马祥庆. 基于 32P示踪的不同供磷环境杉木幼苗磷的分配规律分析[J]. 植物生态学报, 2018, 42(11): 1103-1112. |
[12] | 宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响[J]. 植物生态学报, 2017, 41(6): 622-631. |
[13] | 严月, 朱建军, 张彬, 张艳杰, 鲁顺保, 潘庆民. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596. |
[14] | 张雷, 王琳琳, 刘世荣, 孙鹏森, 余振, 黄书涛, 张旭东. 生境概率预测值转换为二元值过程中4个阈值选择方法的比较评估——以珙桐和杉木生境预估为例[J]. 植物生态学报, 2017, 41(4): 387-395. |
[15] | 史顺增, 熊德成, 邓飞, 冯建新, 许辰森, 钟波元, 陈云玉, 陈光水, 杨玉盛. 土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响[J]. 植物生态学报, 2017, 41(2): 186-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19