植物生态学报 ›› 2025, Vol. 49 ›› Issue (12): 2080-2091.DOI: 10.17521/cjpe.2024.0138 cstr: 32100.14.cjpe.2024.0138
万冬梅, 杨智杰, 刘小飞, 熊德成, 胥超, 陈仕东*(
), 杨玉盛
收稿日期:2024-04-30
接受日期:2024-12-24
出版日期:2025-12-20
发布日期:2024-12-24
通讯作者:
*陈仕东(sdchen@fjnu.edu.cn)基金资助:
WAN Dong-Mei, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, XU Chao, CHEN Shi-Dong*(
), YANG Yu-Sheng
Received:2024-04-30
Accepted:2024-12-24
Online:2025-12-20
Published:2024-12-24
Supported by:摘要:
林木的生长物候是全球变化背景下森林碳汇研究的热点领域。目前为止, 由于观测的困难, 大多研究只涉及林木的径向生长, 关于林木高生长的研究仍十分缺乏, 相关研究也很少采用高频监测技术手段, 这限制了对林木高生长物候及其驱动机制的认识; 同时, 通过冠层颜色指数反演林木生长动态也成为一种趋势。因此, 该研究从基础仪器和算法的角度出发, 以亚热带典型阔叶树种米槠(Castanopsis carlesii)和针叶树种杉木(Cunninghamia lanceolata)的幼树为研究对象, 使用面阵固态激光雷达对中宇宙生长平台的树高生长动态进行了连续高频测量, 此外, 该研究从可见光延时摄影照片中提取了RGB转换的冠层颜色指数, 并将其与多气象观测系统监测的环境因子结合, 探究林木高度生长的物候及其气候驱动因素。研究结果表明: 米槠和杉木的生长季开始时间相近, 米槠的生长季结束时间显著早于杉木, 杉木的生长季长度显著大于米槠、树高年累计生长量也大于米槠; 米槠树高单日生长速率与土壤水分含量显著正相关; 杉木树高单日生长速率与气温、土壤水分含量显著负相关, 与土壤温度、饱和水汽压差(VPD)显著正相关; 米槠和杉木的冠层颜色指数在表征树高生长动态时存在差异, 杉木树高单日生长速率与绝对绿度(ExG)、相对绿度(Gcc)、绿红植被指数(GRVI)均显著正相关, 而米槠树高单日生长速率仅与绿红植被指数(GRVI)显著正相关, 与其余颜色指数的相关性较弱。综上, 该研究利用系统的林木生长物候观测仪器, 分析林木高生长物候及其影响因子; 以及冠层颜色指数对林木生长的反演, 为森林碳汇研究提供重要的理论依据。
万冬梅, 杨智杰, 刘小飞, 熊德成, 胥超, 陈仕东, 杨玉盛. 基于固态激光雷达测高法的亚热带幼树生长物候及其对环境因子的响应. 植物生态学报, 2025, 49(12): 2080-2091. DOI: 10.17521/cjpe.2024.0138
WAN Dong-Mei, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, XU Chao, CHEN Shi-Dong, YANG Yu-Sheng. Subtropical tree saplings growth phenology based on solid-state Lidar altimetry and its response to environmental factors. Chinese Journal of Plant Ecology, 2025, 49(12): 2080-2091. DOI: 10.17521/cjpe.2024.0138
图1 福建三明森林生态系统国家野外科学观测研究站高频物候监测设备集成(拍摄于2024年10月16日)。
Fig. 1 High frequency phenological monitoring equipment integration at the Fujian Sanming Forest Ecosystem and National Field Scientific Observatory (Photo captured on October 16, 2024).
图2 米槠和杉木树高累积生长量及生长速率。阴影区域表示标准误。
Fig. 2 Hight cumulative growth and growth rate of Castanopsis carlesii and Cunninghamia lanceolata. Shaded areas represent standard errors.
| 树种 Tree species | 生长开始时间 Start day of growth (DOY) | 生长结束时间 End day of growth (DOY) | 生长季长度 Growing season length (d) | 年生长量 Annual growth (cm) |
|---|---|---|---|---|
| 米槠 Castanopsis carlesii | 83.67 ± 4.04a | 283.00 ± 6.56b | 199.33 ± 10.07b | 87.32 ± 2.45b |
| 杉木 Cunninghamia lanceolata | 83.33 ± 3.06a | 321.33 ± 13.05a | 238.00 ± 15.40a | 98.86 ± 1.83a |
表1 米槠和杉木树高生长物候参数(平均值±标准误)
Table 1 Height growth phenology of Castanopsis carlesii and Cunninghamia lanceolata (mean ± SE)
| 树种 Tree species | 生长开始时间 Start day of growth (DOY) | 生长结束时间 End day of growth (DOY) | 生长季长度 Growing season length (d) | 年生长量 Annual growth (cm) |
|---|---|---|---|---|
| 米槠 Castanopsis carlesii | 83.67 ± 4.04a | 283.00 ± 6.56b | 199.33 ± 10.07b | 87.32 ± 2.45b |
| 杉木 Cunninghamia lanceolata | 83.33 ± 3.06a | 321.33 ± 13.05a | 238.00 ± 15.40a | 98.86 ± 1.83a |
图3 福建三明森林生态系统国家野外科学观测研究站环境因子变化特征。
Fig. 3 Variation characteristics of environmental factors at the Fujian Sanming Forest Ecosystem and National Field Scientific Observatory. PAR and VPD are photosynthetically active radiation and vapor pressure deficit, respectively.
图4 米槠和杉木在特定气候区间的累积生长量占年生长量的比例(平均值±标准误)。
Fig. 4 Proportion of cumulative growth on annual growth in specific climatic intervals for Castanopsis carlesii and Cunninghamia lanceolata (mean ± SE). PAR and VPD are photosynthetically active radiation and vapor pressure deficit, respectively.
图5 米槠和杉木树高日生长量与气候因子的线性混合效应模型的标准化系数。用实心圆圈表示显著性水平(p < 0.05), 用空心圆圈表示显著性水平(p > 0.05)。
Fig. 5 Standardized coefficients of the linear mixed-effects models for Castanopsis carlesii and Cunninghamia lanceolata. Significant levels (p < 0.05) were marked in closed circles, and significance levels (p > 0.05) were marked in hollow circles. PAR and VPD are photosynthetically active radiation and vapor pressure deficit, respectively.
图6 米槠和杉木冠层颜色指数时间序列曲线。ExG、Gcc和GRVI分别表示绝对绿度指数、绝对绿度指数、绿红植被指数。
Fig. 6 Time series curves of canopy color indices for Castanopsis carlesii and Cunninghamia lanceolata. ExG, Gcc, and GRVI indicate green excess index, green chromatic coordinate, and green red vegetation index, respectively.
| 米槠 Castanopsis carlesii | 单日生长速率 Daily growth rate | 绝对绿度指数 ExG | 相对绿度指数 Gcc | 绿红植被指数 GRVI |
|---|---|---|---|---|
| 单日生长速率 Daily growth rate | 1 | 0.024 | 0.053 | 0.348* |
| 绝对绿度指数 ExG | 1 | 0.991** | 0.737** | |
| 相对绿度指数 Gcc | 1 | 0.800** | ||
| 绿红植被指数 GRVI | 1 | |||
| 杉木 Cunninghamia lanceolata | 单日生长速率 Daily growth rate | 绝对绿度指数 ExG | 相对绿度指数 Gcc | 绿红植被指数 GRVI |
| 单日生长速率 Daily growth rate | 1 | 0.543** | 0.530** | 0.551** |
| 绝对绿度指数 ExG | 1 | 0.997** | 0.978** | |
| 相对绿度指数 Gcc | 1 | 0.979** | ||
| 绿红植被指数 GRVI | 1 |
表2 米槠和杉木冠层颜色指数与树高生长量相关性检验
Table 2 Correlation test between canopy color index and height increment of Castanopsis carlesii and Cunninghamia lanceolata
| 米槠 Castanopsis carlesii | 单日生长速率 Daily growth rate | 绝对绿度指数 ExG | 相对绿度指数 Gcc | 绿红植被指数 GRVI |
|---|---|---|---|---|
| 单日生长速率 Daily growth rate | 1 | 0.024 | 0.053 | 0.348* |
| 绝对绿度指数 ExG | 1 | 0.991** | 0.737** | |
| 相对绿度指数 Gcc | 1 | 0.800** | ||
| 绿红植被指数 GRVI | 1 | |||
| 杉木 Cunninghamia lanceolata | 单日生长速率 Daily growth rate | 绝对绿度指数 ExG | 相对绿度指数 Gcc | 绿红植被指数 GRVI |
| 单日生长速率 Daily growth rate | 1 | 0.543** | 0.530** | 0.551** |
| 绝对绿度指数 ExG | 1 | 0.997** | 0.978** | |
| 相对绿度指数 Gcc | 1 | 0.979** | ||
| 绿红植被指数 GRVI | 1 |
| [1] | Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS (2016). Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology, 22, 1690-1709. |
| [2] | Antonucci S, Rossi S, Lombardi F, Marchetti M, Tognetti R (2019). Influence of climatic factors on silver fir xylogenesis along the Italian Peninsula. IAWA Journal, 40, 259. DOI: 10.1163/22941932-40190222. |
| [3] |
Bowman DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD (2013). Detecting trends in tree growth: not so simple. Trends in Plant Science, 18, 11-17.
DOI PMID |
| [4] |
Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
DOI URL |
| [5] | Chen H, Zeng ZZ, Wu J, Peng LQ, Lakshmi V, Yang H, Liu JG (2020). Large uncertainty on forest area change in the early 21st century among widely used global land cover datasets. Remote Sensing, 12, 3502. DOI: 10.3390/rs12213502. |
| [6] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539.
DOI |
| [7] |
Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013). Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research, 126, 447-460.
DOI PMID |
| [8] |
Croft H, Chen JM, Zhang Y (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecological Complexity, 17, 119-130.
DOI URL |
| [9] |
Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016). Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5-25.
DOI URL |
| [10] | Fang K, Kou YP, Tang N, Liu J, Zhang XY, He HL, Xia RX, Zhao WQ, Li DD, Liu Q (2024). Differential responses of soil bacteria, fungi and protists to root exudates and temperature. Microbiological Research, 286, 127829. DOI: 10.1016/j.micres.2024.127829. |
| [11] |
Guo XL, Yu BY, Liang HX, Huang JG (2017). Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach. Chinese Journal of Plant Ecology, 41, 795-804.
DOI URL |
|
[郭霞丽, 余碧云, 梁寒雪, 黄建国 (2017). 结合微树芯方法的树木生长生理生态学研究进展. 植物生态学报, 41, 795-804.]
DOI |
|
| [12] |
Huang JG, Deslauriers A, Rossi S (2014). Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytologist, 203, 831-841.
DOI URL |
| [13] |
Huang JG, Guo XL, Rossi S, Zhai LH, Yu BY, Zhang SK, Zhang MF (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236.
DOI URL |
| [14] |
Jansons Ā, Matisons R, Baumanis I, Puriņa L (2013). Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia. Forest Ecology and Management, 306, 185-191.
DOI URL |
| [15] | Liu YN, Fan ZX, Lin YX, Kaewmano A, Wei XL, Fu PL, Grießinger J, Bräuning A (2024). Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, Southwest China. Tree Physiology, 44, tpae086. DOI: 10.1093/treephys/tpae086. |
| [16] | Lv KT, Zhou ML, Ding Y, Zang RG, Yao J, Luo YS, Yan DF (2023). Regeneration characteristics and influencing factors of woody plant on natural evergreen secondary broad-leaved forests in the subtropical, China. Global Ecology and Conservation, 42, e02394. DOI: 10.1016/j.gecco.2023.e02394. |
| [17] |
McCollum C, Ibáñez I (2020). Soil moisture gradients and climate change: predicting growth of a critical boreal tree species. Canadian Journal of Forest Research, 50, 1074-1080.
DOI |
| [18] | Meng SW, Yang FT, Dai XQ, Wang HM (2021). Radial growth dynamics of Chinese fir and its response to seasonal drought. Chinese Journal of Applied Ecology, 32, 3521-3530. |
|
[孟盛旺, 杨风亭, 戴晓琴, 王辉民 (2021). 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 32, 3521-3530.]
DOI |
|
| [19] |
Nagai S, Ichie T, Yoneyama A, Kobayashi H, Inoue T, Ishii R, Suzuki R, Itioka T (2016). Usability of time-lapse digital camera images to detect characteristics of tree phenology in a tropical rainforest. Ecological Informatics, 32, 91-106.
DOI URL |
| [20] |
Piao SL, Liu Q, Chen AP, Janssens IA, Fu YS, Dai JH, Liu LL, Lian X, Shen MG, Zhu XL (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
DOI PMID |
| [21] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
|
[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
| [22] |
Qian NP, Gao HX, Song CJ, Dong CC, Liu QJ (2024). Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains. Chinese Journal of Plant Ecology, 48, 1001-1010.
DOI URL |
|
[钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟 (2024). 长白山白桦径向生长季节动态及其对环境因子的响应. 植物生态学报, 48, 1001-1010.]
DOI |
|
| [23] | Qu ZK, Lin CF, Zhao HY, Chen TT, Yao XD, Wang XH, Yang YS, Chen GS (2024). Above- and belowground phenology responses of subtropical Chinese fir (Cunninghamia lanceolata) to soil warming, precipitation exclusion and their interaction. Science of the Total Environment, 933, 173147. DOI: 10.1016/j.scitotenv.2024.173147. |
| [24] |
Sanginés de Cárcer P, Vitasse Y, Peñuelas J, Jassey VEJ, Buttler A, Signarbieux C (2018). Vapor-pressure deficit and extreme climatic variables limit tree growth. Global Change Biology, 24, 1108-1122.
DOI PMID |
| [25] |
Seyednasrollah B, Bowling DR, Cheng R, Logan BA, Magney TS, Frankenberg C, Yang JC, Young AM, Hufkens K, Arain MA, Black TA, Blanken PD, Bracho R, Jassal R, Hollinger DY, Law BE, Nesic Z, Richardson AD (2021). Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytologist, 229, 2586-2600.
DOI PMID |
| [26] |
Shi MJ, Li B, Yi LT, Liu MH (2023). Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering. Chinese Journal of Plant Ecology, 47, 1159-1170.
DOI URL |
|
[施梦娇, 李斌, 伊力塔, 刘美华 (2023). 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异. 植物生态学报, 47, 1159-1170.]
DOI |
|
| [27] |
Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013). Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant, Cell & Environment, 36, 116-127.
DOI URL |
| [28] |
Stuble KL, Bennion LD, Kuebbing SE (2021). Plant phenological responses to experimental warming—A synthesis. Global Change Biology, 27, 4110-4124.
DOI URL |
| [29] | Teng JK, Liu Y, Ding MT (2018). The evaluation of efficiency of color metrics in monitoring Robinia pseudoacacia phenology based on RGB images. Remote Sensing Technology and Application, 33, 476-485. |
|
[滕佳昆, 刘宇, 丁明涛 (2018). 基于RGB图像的刺槐季节变化监测适用指数研究. 遥感技术与应用, 33, 476-485.]
DOI |
|
| [30] |
Vanoni M, Bugmann H, Nötzli M, Bigler C (2016). Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecology and Evolution, 6, 3555-3570.
DOI PMID |
| [31] |
Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA (2014). Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 174, 1449-1461.
DOI PMID |
| [32] |
Wang HL, Zhang Y, Wang T, Yang Q, Yang YL, Li Z, Li BS, Wen X, Li WY, Yin WL, Xia XL, Guo HW, Li ZH (2021). An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. The Plant Cell, 33, 1594-1614.
DOI URL |
| [33] | Wei XL, Fan ZX, Kaewmano A, Lin YX, Chen LM, Fu PL (2021). Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna, Southwest China. Chinese Journal of Applied Ecology, 32, 3567-3575. |
|
[韦小练, 范泽鑫, Kaewmano A, 林友兴, 陈礼敏, 付培立 (2021). 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应. 应用生态学报, 32, 3567-3575.]
DOI |
|
| [34] | Xu KJ, Zeng HD, Zhang ZD, Xie JS, Yang YS (2015). Relating forest phenology to temperature and precipitation in the subtropical region of Fujian based on time-series MODIS-NDVI. Journal of Geo-information Science, 17, 1249-1259. |
|
[徐凯健, 曾宏达, 张仲德, 谢锦升, 杨玉盛 (2015). 亚热带福建省森林生长季与气温、降水相关性的遥感分析. 地球信息科学学报, 17, 1249-1259.]
DOI |
|
| [35] |
Yin CM, He BB, Quan XW, Liao ZM (2016). Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. International Journal of Remote Sensing, 37, 615-632.
DOI URL |
| [36] | Yuan WP, Zheng Y, Piao SL, Ciais P, Lombardozzi D, Wang YP, Ryu Y, Chen GX, Dong WJ, Hu ZM, Jain AK, Jiang CY, Kato E, Li SH, Lienert S, et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5, eaax1396. DOI: 10.1126/sciadv.aax1396. |
| [37] | Zhang H, Fu PL, Lin YX, Gesang, Yang JQ, Ge R, Fan ZX (2022). Intra-annual radial growth of Abies georgei and Larix potaninii and its responses to environmental factors in the Baima Snow Mountain, Northwest Yunnan, China. Chinese Journal of Applied Ecology, 33, 2881-2888. |
|
[张慧, 付培立, 林友兴, 格桑, 杨建强, 格茸取扎, 范泽鑫 (2022). 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应. 应用生态学报, 33, 2881-2888.]
DOI |
|
| [38] | Zhang JT, Li XX, Ren P, Leavitt SW, Rossi S, Liang EY (2022). Terminal bud size, spring and summer temperatures regulate the timing of height-growth cessation of Smith fir on the southeastern Tibetan Plateau. Agricultural and Forest Meteorology, 316, 108883. DOI: 10.1016/j.agrformet.2022.108883. |
| [39] |
Zhang L, Chen YJ, Hao GY, Ma KP, Bongers F, Sterck FJ (2020a). Conifer and broadleaved trees differ in branch allometry but maintain similar functional balances. Tree Physiology, 40, 511-519.
DOI URL |
| [40] |
Zhang SK, Buttò V, Khare S, Deslauriers A, Morin H, Huang JG, Ren H, Rossi S (2020b). Calibrating PhenoCam data with phenological observations of a black spruce stand. Canadian Journal of Remote Sensing, 46, 154-165.
DOI URL |
| [41] | Zhang ZQ, Zhang L, Xu H, Creed IF, Blanco JA, Wei XH, Sun G, Asbjornsen H, Bishop K (2023). Forest water-use efficiency: effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 534, 120853. DOI: 10.1016/j.foreco.2023.120853. |
| [42] | Zhong ZQ, He B, Wang YP, Chen HW, Chen DL, Fu YH, Chen YN, Guo LL, Deng Y, Huang L, Yuan WP, Hao XM, Tang R, Liu HM, Sun LY, Xie XM, Zhang YF (2023). Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Science Advances, 9, eadf3166. DOI: 10.1126/sciadv.adf3166. |
| [43] | Zhou L, Chi YG, Liu XT, Dai XQ, Yang FT (2020). Land surface phenology tracked by remotely sensed sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests. Acta Ecologica Sinica, 40, 4114-4125. |
| [周蕾, 迟永刚, 刘啸添, 戴晓琴, 杨风亭 (2020). 日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪. 生态学报, 40, 4114-4125.] | |
| [44] |
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S (2021). Why trees grow at night. New Phytologist, 231, 2174-2185.
DOI PMID |
| [1] | 严文秀, 赵诗晗, 郑春燕, 张萍, 沈海花, 常锦峰, 徐亢. 基于多物候指标的人工饲草长势监测及产量估测[J]. 植物生态学报, 2025, 49(7): 1096-1109. |
| [2] | 李思雨, 杨风亭, 王辉民, 戴晓琴, 孟盛旺. 杉木和木荷木质部形成季节动态及其对环境因子的响应[J]. 植物生态学报, 2025, 49(2): 295-307. |
| [3] | 徐波, 杨子松, 李波, 石福孙. 海拔对暗紫贝母功能性状及鳞茎药用成分含量的影响[J]. 植物生态学报, 2025, 49(12): 2137-2148. |
| [4] | 周鑫宇, 刘会良, 高贝, 卢妤婷, 陶玲庆, 文晓虎, 张岚, 张元明. 新疆特有濒危植物雪白睡莲繁殖生物学研究[J]. 植物生态学报, 2025, 49(10): 1643-1655. |
| [5] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
| [6] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
| [7] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
| [8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
| [9] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
| [10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
| [11] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
| [12] | 张迪, 都业勤, 王磊, 陈鑫, 闫兴富, 唐占辉. 两种生境间大花百合不同性别表型开花及传粉特征的差异[J]. 植物生态学报, 2022, 46(5): 580-592. |
| [13] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
| [14] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
| [15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19