Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (7): 797-810.DOI: 10.17521/cjpe.2021.0288
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
GAN Zi-Ying1, WANG Hao1, DING Chi1, LEI Mei1, YANG Xiao-Gang2, CAI Jing-Yan1, QIU Qing-Yan1,*(), HU Ya-Lin1
Received:
2021-08-11
Accepted:
2021-11-05
Online:
2022-07-20
Published:
2022-07-15
Contact:
QIU Qing-Yan
Supported by:
GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms[J]. Chin J Plant Ecol, 2022, 46(7): 797-810.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0288
植物器官 Plant tissue | 碳(C)含量 Carbon (C) content (g·kg-1) | 氮(N)含量 Nitrogen (N) content (g·kg-1) | C:N | 稳定碳同位素比值 δ13C (‰) |
---|---|---|---|---|
CGL | 426.70 ± 1.17a | 3.79 ± 0.05g | 112.54 ± 0.13a | 32.16 ± 0.05g |
CGR | 362.52 ± 6.80c | 4.71 ± 0.04f | 77.03 ± 0.72c | 26.83 ± 0.05h |
CLL | 380.69 ± 17.98b | 4.43 ± 0.15fg | 85.96 ± 1.16b | 40.25 ± 0.01e |
CLR | 355.38 ± 0.29cd | 17.21 ± 0.09c | 20.65 ± 0.12e | 36.37 ± 0.03f |
ACL | 351.61 ± 0.81cd | 50.11 ± 0.56a | 7.02 ± 0.08g | 44.36 ± 0.10d |
ACR | 342.23 ± 3.36de | 15.08 ± 0.08d | 22.69 ± 0.14e | 53.92 ± 0.10a |
MFL | 362.64 ± 0.81c | 7.52 ± 0.24e | 48.28 ± 1.63d | 49.30 ± 0.20c |
MFR | 329.10 ± 0.15e | 19.62 ± 0.10b | 16.77 ± 0.08f | 49.89 ± 0.20b |
Table 1 Basic chemical properties of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest (mean ± SE, n = 3)
植物器官 Plant tissue | 碳(C)含量 Carbon (C) content (g·kg-1) | 氮(N)含量 Nitrogen (N) content (g·kg-1) | C:N | 稳定碳同位素比值 δ13C (‰) |
---|---|---|---|---|
CGL | 426.70 ± 1.17a | 3.79 ± 0.05g | 112.54 ± 0.13a | 32.16 ± 0.05g |
CGR | 362.52 ± 6.80c | 4.71 ± 0.04f | 77.03 ± 0.72c | 26.83 ± 0.05h |
CLL | 380.69 ± 17.98b | 4.43 ± 0.15fg | 85.96 ± 1.16b | 40.25 ± 0.01e |
CLR | 355.38 ± 0.29cd | 17.21 ± 0.09c | 20.65 ± 0.12e | 36.37 ± 0.03f |
ACL | 351.61 ± 0.81cd | 50.11 ± 0.56a | 7.02 ± 0.08g | 44.36 ± 0.10d |
ACR | 342.23 ± 3.36de | 15.08 ± 0.08d | 22.69 ± 0.14e | 53.92 ± 0.10a |
MFL | 362.64 ± 0.81c | 7.52 ± 0.24e | 48.28 ± 1.63d | 49.30 ± 0.20c |
MFR | 329.10 ± 0.15e | 19.62 ± 0.10b | 16.77 ± 0.08f | 49.89 ± 0.20b |
Fig. 1 Dynamics of cumulative CO2 emissions derived from soil organic carbon (SOC) and dissolved organic matter (DOM) in a subtropical forest and contribution of different carbon sources to CO2 emissions (mean ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate CO2 emissions derived from soil was significantly different under different treatments (p < 0.05), and different uppercase letters indicate the CO2 emissions derived from DOM were significantly different under different treatments (p < 0.05).
Fig. 2 Effect of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil priming rate and soil cumulative priming effect (mean ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents the factor has no significant effect on the index.
Fig. 3 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil β-glucosidase and cellobiohydrolase activities (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
Fig. 4 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil MBC and 13C-MBC content (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
Fig. 5 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil microbial phosphate fatty acids (PLFAs) content (means ± SE, n = 3). G+, Gram-positive bacteria; G-, Gram-negative bacteria. ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect.
Fig. 6 Effects of dissolved organic matter (DOM) derived from different plant and tissues in a subtropical forest on soil available nitrogen (means ± SE, n = 3). ACL, Acacia confusa leaf; ACR, Acacia confusa root; CGL, Cyclobalanopsis glauca leaf; CGR, Cyclobalanopsis glauca root; CK, control; CLL, Cunninghamia lanceolata leaf; CLR, Cunninghamia lanceolata root; MFL, Manglietia fordiana leaf; MFR, Manglietia fordiana root. ** and * represent the factor has significant effect on the index at p < 0.01 and p < 0.05, respectively. ns represents no significant effect. Different lowercase letters indicate significant difference among different treatments (p < 0.05).
Fig. 7 Structural equation model (SEM) for the effect of dissolved organic matter (DOM) derived from roots and leaves of plant input on soil priming effect in a subtropical forest. Solid line is positive path and dashed line is negative path. Arrow line thickness indicates the strength of the causal relationship. Numbers adjacent to arrows represented standardized path coefficients of the relationships (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Solid and dashed arrows indicated positive and negative relationships in a fitted SEM, respectively. Double-sided arrows represented covariance between variables. The total variation explained by the model is indicated by R2. AGFI, adjusted goodness of fit index; 13C-MBC, plant-derived microbial biomass carbon; G-, Gram-negative bacteria; GFI, goodness of fit index; RMSEA, root mean square error of approximation.
可溶性有机质来源 Dissolved organic matter source | 土壤生化指标 Soil biochemical index | 标准化直接效应值 Standardized direct effect | 标准化间接效应值 Standardized indirect effect | 标准化总效应值 Standardized total effect | p |
---|---|---|---|---|---|
叶 Leaf | 土壤有效氮 Soil available nitrogen | 0.000 | 0.466 | 0.466 | <0.01 |
细菌 Bacteria | -0.121 | -0.078 | -0.199 | <0.05 | |
纤维素酶 Cellobiohydrolase | -0.547 | 0.000 | -0.547 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.346 | -0.233 | -0.579 | <0.01 | |
根 Root | 革兰氏阴性菌 G- | 0.000 | -0.122 | -0.122 | <0.01 |
真菌 Fungi | 0.162 | 0.000 | 0.162 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.483 | -0.344 | -0.827 | <0.01 | |
纤维素酶 Cellobiohydrolase | -0.413 | 0.000 | -0.413 | <0.01 | |
土壤有效氮 Soil available nitrogen | 0.248 | 0.000 | 0.248 | <0.01 |
Table 2 Relationship between soil priming effect and soil biochemical indices in a subtropical forest
可溶性有机质来源 Dissolved organic matter source | 土壤生化指标 Soil biochemical index | 标准化直接效应值 Standardized direct effect | 标准化间接效应值 Standardized indirect effect | 标准化总效应值 Standardized total effect | p |
---|---|---|---|---|---|
叶 Leaf | 土壤有效氮 Soil available nitrogen | 0.000 | 0.466 | 0.466 | <0.01 |
细菌 Bacteria | -0.121 | -0.078 | -0.199 | <0.05 | |
纤维素酶 Cellobiohydrolase | -0.547 | 0.000 | -0.547 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.346 | -0.233 | -0.579 | <0.01 | |
根 Root | 革兰氏阴性菌 G- | 0.000 | -0.122 | -0.122 | <0.01 |
真菌 Fungi | 0.162 | 0.000 | 0.162 | <0.01 | |
植物来源微生物生物量碳 13C-MBC | -0.483 | -0.344 | -0.827 | <0.01 | |
纤维素酶 Cellobiohydrolase | -0.413 | 0.000 | -0.413 | <0.01 | |
土壤有效氮 Soil available nitrogen | 0.248 | 0.000 | 0.248 | <0.01 |
土壤基本理化性质 Basic properties of the study soil | 平均值 Mean |
---|---|
土壤有机碳含量 SOC content (g·kg-1) | 12.30 |
总氮含量 TN content (g·kg-1) | 2.07 |
硝态氮含量 NO3--N content (mg N·kg-1) | 0.79 |
铵态氮含量 NH4+-N content (mg N·kg-1) | 11.56 |
微生物生物量碳含量 MBC content (mg·kg-1) | 330.86 |
微生物生物量氮含量 MBN content (mg·kg-1) | 55.93 |
微生物碳/微生物氮 MBC:MBN | 5.92 |
13C (‰) | -23.39 |
Supplement I Basic properties of the study soil in a subtropical forest (0-20 cm)
土壤基本理化性质 Basic properties of the study soil | 平均值 Mean |
---|---|
土壤有机碳含量 SOC content (g·kg-1) | 12.30 |
总氮含量 TN content (g·kg-1) | 2.07 |
硝态氮含量 NO3--N content (mg N·kg-1) | 0.79 |
铵态氮含量 NH4+-N content (mg N·kg-1) | 11.56 |
微生物生物量碳含量 MBC content (mg·kg-1) | 330.86 |
微生物生物量氮含量 MBN content (mg·kg-1) | 55.93 |
微生物碳/微生物氮 MBC:MBN | 5.92 |
13C (‰) | -23.39 |
[1] |
Ahirwal J, Maiti SK, Singh AK (2017). Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment, 583, 153-162.
DOI URL |
[2] |
Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19, 937-947.
DOI PMID |
[3] |
Batjes NH (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[4] |
Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014). Microbial interactions affect sources of priming induced by cellulose. Soil Biology & Biochemistry, 74, 39-49.
DOI URL |
[5] |
Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007). Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105.
DOI URL |
[6] |
Blagodatskaya Е, Kuzyakov Y (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131.
DOI URL |
[7] | Chen FL, Jiang B, Zhang K, Zheng H, Xiao Y, Ouyang ZY, Tu NM (2011). Relationships between initial chemical composition of forest leaf litters and their decomposition rates in degraded red soil hilly region of Southern China. Chinese Journal of Applied Ecology, 22, 565-570. |
[陈法霖, 江波, 张凯, 郑华, 肖燚, 欧阳志云, 屠乃美 (2011). 退化红壤丘陵区森林凋落物初始化学组成与分解速率的关系. 应用生态学报, 22, 565-570.] | |
[8] |
Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367.
DOI URL |
[9] |
Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI URL |
[10] | Cleveland CC, Neff JC, Townsend AR, Hood E (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 7, 175-285. |
[11] |
Du LS, Zhu ZK, Qi YT, Zou DS, Zhang GL, Zeng XY, Ge TD, Wu JS, Xiao ZH (2020). Effects of different stoichiometric ratios on mineralisation of root exudates and its priming effect in paddy soil. Science of the Total Environment, 743, 140808. DOI: 10.1016/j.scitotenv.2020.140808.
DOI URL |
[12] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
DOI URL |
[13] |
Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314-320.
DOI URL |
[14] |
Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96.
DOI URL |
[15] |
Frostegård Å, Tunlid A, Bååth E (2011). Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625.
DOI URL |
[16] |
Gregorich EG, Beare MH, Stoklas U, St-Georges P (2003). Biodegradability of soluble organic matter in maize- cropped soils. Geoderma, 113, 237-252.
DOI URL |
[17] |
Guenet B, Danger M, Abbadie L, Lacroix G (2010). Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850-2861.
DOI URL |
[18] |
Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179-1192.
DOI URL |
[19] |
Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165, 277-304.
DOI URL |
[20] |
Kuzyakov Y (2002). Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
DOI URL |
[21] |
Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371.
DOI URL |
[22] |
Liang X, Yuan J, Yang E, Meng J (2017). Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. European Journal of Soil Biology, 82, 50-55.
DOI URL |
[23] | Liu SY, Liang AZ, Yang XM, Zhang XP, Jia SX, Chen XW, Zhang SX, Sun BJ, Chen SL (2015). Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils. Environmental Science, 36, 2686-2694. |
[刘四义, 梁爱珍, 杨学明, 张晓平, 贾淑霞, 陈学文, 张士秀, 孙冰洁, 陈升龙 (2015). 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响. 环境科学, 36, 2686-2694.] | |
[24] |
Lü MK, Xie JS, Wang C, Guo JF, Wang MH, Liu XF, Chen Y, Chen GS, Yang YS (2015). Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils, 51, 857-867.
DOI URL |
[25] |
Luo D, Shi ZM, Tang JC, Liu SR, Lu LH (2014). Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China. Chinese Journal of Applied Ecology, 25, 2543-2550.
PMID |
[罗达, 史作民, 唐敬超, 刘世荣, 卢立华 (2014). 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构. 应用生态学报, 25, 2543-2550.]
PMID |
|
[26] |
Lyu MK, Xie JS, Vadeboncoeur MA, Wang MH, Qiu X, Ren YB, Jiang MH, Yang YS, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934.
DOI URL |
[27] |
Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684-686.
DOI URL |
[28] |
Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190.
DOI URL |
[29] |
Perveen N, Barot S, Maire V, Cotrufo MF, Shahzad T, Blagodatskaya E, Stewart CE, Ding WX, Siddiq MR, Dimassi B, Mary B, Fontaine S (2019). Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biology & Biochemistry, 134, 162-171.
DOI URL |
[30] |
Qiao N, Schaefer D, Blagodatskaya E, Zou XM, Xu XL, Kuzyakov Y (2014). Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 20, 1943-1954.
DOI PMID |
[31] |
Qiu QY, Wu LF, Li BB (2019). Crop residue-derived dissolved organic matter accelerates the decomposition of native soil organic carbon in a temperate agricultural ecosystem. Acta Ecologica Sinica, 39, 69-76.
DOI URL |
[32] | Qiu QY, Yang Y, Wang H, Hu YL (2020). Effects of labile organic carbon application rates on the priming effect at different soil depths in an evergreen broadleaved forest of Wuyi Mountain. Chinese Journal of Ecology, 39, 1153-1163. |
[丘清燕, 杨钰, 王浩, 胡亚林 (2020). 易分解有机碳输入量对武夷山常绿阔叶林不同土层深度土壤激发效应的影响. 生态学杂志, 39, 1153-1163.] | |
[33] |
Shahbaz M, Kuzyakov Y, Heitkamp F (2017a). Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma, 304, 76-82.
DOI URL |
[34] |
Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017b). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 53, 287-301.
DOI URL |
[35] | Shao YJ, Yu MX, Jiang J, Cao NN, Chu GW, Yan JH (2017). Status and dynamic of soil C, N and P of three forest succession gradient in Dinghushan. Journal of Tropical and Subtropical Botany, 25, 523-530. |
[邵宜晶, 俞梦笑, 江军, 曹楠楠, 褚国伟, 闫俊华 (2017). 鼎湖山3种演替阶段森林土壤C、N、P现状及动态. 热带亚热带植物学报, 25, 523-530.] | |
[36] | Song XZ, Jiang H, Yu SQ, Ma YD, Zhou GM, Dou RP, Guo PP (2009). Litter decomposition of dominant plant species in successional stages in mid-subtropical zone. Chinese Journal of Applied Ecology, 20, 537-542. |
[宋新章, 江洪, 余树全, 马元丹, 周国模, 窦荣鹏, 郭培培 (2009). 中亚热带森林群落不同演替阶段优势种凋落物分解试验. 应用生态学报, 20, 537-542.] | |
[37] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[38] |
Wan JJ, Guo JF, Ji SR, Ren WL, Si YT, Yang YS (2015). Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests. Chinese Journal of Plant Ecology, 39, 674-681.
DOI URL |
[万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 司友涛, 杨玉盛 (2015). 不同来源可溶性有机物对亚热带森林土壤CO2排放的影响. 植物生态学报, 39, 674-681.]
DOI |
|
[39] |
Wang H, Xu WH, Hu GQ, Dai WW, Jiang P, Bai E (2015). The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest. Oecologia, 178, 1239-1250.
DOI PMID |
[40] | Wang H, Yang Y, Xi D, Qiu QY, Hu YL (2020). Impacts of labile organic carbon input on the priming effect of three forest soils in Wuyi Mountain. Acta Ecologica Sinica, 40, 9184-9194. |
[王浩, 杨钰, 习丹, 丘清燕, 胡亚林 (2020). 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响. 生态学报, 40, 9184-9194.] | |
[41] |
Wang QK, Liu SP, Wang SL (2013). Debris manipulation alters soil CO2 efflux in a subtropical plantation forest. Geoderma, 192, 316-322.
DOI URL |
[42] |
Wild B, Schnecker J, Alves RJE, Barsukov P, Bárta J, Čapek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Šantrůčková H, Shibistova O, Urich T, et al. (2014). Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology & Biochemistry, 75, 143-151.
DOI URL |
[43] |
Xu YD, Ding F, Gao XD, Wang Y, Li M, Wang JK (2019). Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. Journal of Soils and Sediments, 19, 1407-1415.
DOI URL |
[44] |
Yin HJ, Phillips RP, Liang RB, Xu ZF, Liu Q (2016). Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils. Applied Soil Ecology, 108, 248-257.
DOI URL |
[45] | Zhang L, Jia SX, Li XL, Lu YM, Liu XF, Guo JF (2021). Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii. Journal of Soil and Water Conservation, 35, 244-251. |
[张磊, 贾淑娴, 李啸灵, 陆宇明, 刘小飞, 郭剑芬 (2021). 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响. 水土保持学报, 35, 244-251.] | |
[46] |
Zhang WD, Wang SL (2012). Effects of NH4+ and NO3- on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China. Soil Biology & Biochemistry, 47, 116-122.
DOI URL |
[47] | Zhang Z, Cai XZ, Tang CD, Guo JF (2017). Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 37, 7660-7667. |
[张政, 蔡小真, 唐偲頔, 郭剑芬 (2017). 可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应. 生态学报, 37, 7660-7667.] | |
[48] |
Zhu ZK, Zeng GJ, Ge TD, Hu YJ, Tong CL, Shibistova O, He XH, Wang J, Guggenberger G, Wu JS (2016). Fate of rice shoot and root residues, rhizodeposits, and microbe- assimilated carbon in paddy soil-Part 1: decomposition and priming effect. Biogeosciences, 13, 4481-4489.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[3] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[4] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[5] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[6] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[7] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[8] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[9] | LIU Shan-Shan, ZHOU Wen-Jun, KUANG Lu-Hui, LIU Zhan-Feng, SONG Qing-Hai, LIU Yun- Tong, ZHANG Yi-Ping, LU Zhi-Yun, SHA Li-Qing. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2020, 44(12): 1262-1272. |
[10] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[11] | Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plant Ecol, 2018, 42(4): 508-516. |
[12] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[13] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224. |
[14] | Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plant Ecol, 2017, 41(8): 862-871. |
[15] | Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides [J]. Chin J Plant Ecol, 2017, 41(6): 639-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn