植物生态学报 ›› 2015, Vol. 39 ›› Issue (2): 159-166.DOI: 10.17521/cjpe.2015.0015
所属专题: 生态化学计量
马玉珠1,2, 钟全林1,2, 靳冰洁1,2, 卢宏典1,2, 郭炳桥1,2, 郑媛1,2, 李曼1,2, 程栋梁1,2,*()
收稿日期:
2014-09-16
接受日期:
2014-12-17
出版日期:
2015-02-01
发布日期:
2015-03-10
通讯作者:
程栋梁
作者简介:
# 共同第一作者
基金资助:
MA Yu-Zhu1,2, ZHONG Quan-Lin1,2, JIN Bing-Jie1,2, LU Hong-Dian1,2, GUO Bing-Qiao1,2, ZHENG Yuan1,2, LI Man1,2, CHENG Dong-Liang1,2,*()
Received:
2014-09-16
Accepted:
2014-12-17
Online:
2015-02-01
Published:
2015-03-10
Contact:
Dong-Liang CHENG
About author:
# Co-first authors
摘要:
为了研究中国陆地植物细根碳(C)、氮(N)、磷(P)的空间变化模式, 揭示细根在“温度-植物生理假说”及“生长速率假说”等方面的规律, 该文收集已发表的有关中国陆地植物细根研究的文献, 从中提取细根C、N、P元素含量及其相关数据, 分析了细根C、N、P含量及其比例与经纬度之间的关系。结果表明: 细根N、P元素含量均随纬度增加而增加, P含量随经度增加而降低, N:P随经度增加而增加。细根N、P含量与年平均气温、年降水量均呈负相关关系, 与土壤养分呈正相关关系。在土壤养分、温度、降水量3个非生物因素中, 土壤养分对细根N、P含量的影响最大。该文中细根和粗根的C:P、N:P差异变化不完全支持“生长速率假说”。根系和叶片一样, N、P含量与纬度呈正相关关系, 支持“温度-植物生理假说”, 反映了植物对自然环境的适应策略。
马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 2015, 39(2): 159-166. DOI: 10.17521/cjpe.2015.0015
MA Yu-Zhu,ZHONG Quan-Lin,JIN Bing-Jie,LU Hong-Dian,GUO Bing-Qiao,ZHENG Yuan,LI Man,CHENG Dong-Liang. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology, 2015, 39(2): 159-166. DOI: 10.17521/cjpe.2015.0015
因变量 Dependent variable | n | 最小值 Min (%) | 最大值 Max (%) | 平均值 Mean (%) | 标准差 Standard deviation | |
---|---|---|---|---|---|---|
细根 Fine root | C | 33 | 37.09 | 58.91 | 47.39 | 5.07 |
N | 146 | 0.24 | 2.97 | 0.92 | 0.43 | |
P | 123 | 0.01 | 0.47 | 0.10 | 0.08 | |
N:P | 123 | 1.63 | 63.87 | 14.27 | 9.88 | |
C:N | 33 | 23.09 | 116.02 | 59.15 | 27.11 | |
C:P | 17 | 166.08 | 1 118.00 | 522.10 | 289.86 | |
粗根 Coarse root | C | 59 | 34.80 | 54.49 | 45.65 | 4.42 |
N | 182 | 0.07 | 2.18 | 0.59 | 0.33 | |
P | 149 | 0.01 | 0.54 | 0.06 | 0.05 | |
N:P | 149 | 1.58 | 35.07 | 11.67 | 6.86 | |
C:N | 55 | 24.27 | 560.00 | 121.98 | 95.50 | |
C:P | 41 | 318.15 | 2 407.22 | 957.27 | 551.18 |
表1 细根和粗根碳(C)、氮(N)、磷(P)含量及元素比例概况
Table 1 Summary of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in fine roots and coarse roots
因变量 Dependent variable | n | 最小值 Min (%) | 最大值 Max (%) | 平均值 Mean (%) | 标准差 Standard deviation | |
---|---|---|---|---|---|---|
细根 Fine root | C | 33 | 37.09 | 58.91 | 47.39 | 5.07 |
N | 146 | 0.24 | 2.97 | 0.92 | 0.43 | |
P | 123 | 0.01 | 0.47 | 0.10 | 0.08 | |
N:P | 123 | 1.63 | 63.87 | 14.27 | 9.88 | |
C:N | 33 | 23.09 | 116.02 | 59.15 | 27.11 | |
C:P | 17 | 166.08 | 1 118.00 | 522.10 | 289.86 | |
粗根 Coarse root | C | 59 | 34.80 | 54.49 | 45.65 | 4.42 |
N | 182 | 0.07 | 2.18 | 0.59 | 0.33 | |
P | 149 | 0.01 | 0.54 | 0.06 | 0.05 | |
N:P | 149 | 1.58 | 35.07 | 11.67 | 6.86 | |
C:N | 55 | 24.27 | 560.00 | 121.98 | 95.50 | |
C:P | 41 | 318.15 | 2 407.22 | 957.27 | 551.18 |
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.74 | -0.002 | 0.102 | 0.070 | 33 |
N | -0.36 | 0.009 | 0.133 | <0.001 | 146 | |
P | -1.54 | 0.013 | 0.097 | <0.001 | 123 | |
N:P | 1.21 | -0.005 | 0.016 | 0.161 | 123 | |
C:N | 2.20 | -0.015 | 0.259 | 0.003 | 33 | |
C:P | 2.95 | -0.009 | 0.085 | 0.256 | 17 | |
粗根 Coarse root | C | 1.71 | -0.002 | 0.099 | 0.015 | 59 |
N | -0.21 | -0.003 | 0.006 | 0.316 | 182 | |
P | -1.45 | 0.005 | 0.020 | 0.084 | 149 | |
N:P | 1.37 | -0.012 | 0.095 | <0.001 | 149 | |
C:N | 2.13 | -0.004 | 0.015 | 0.373 | 55 | |
C:P | 2.89 | 0.001 | 0.001 | 0.863 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.71 | -0.002 | 0.081 | 0.006 | 92 |
N | -0.29 | 0.003 | 0.008 | 0.101 | 328 | |
P | -1.50 | 0.009 | 0.051 | <0.001 | 272 | |
N:P | 1.29 | -0.008 | 0.047 | <0.001 | 272 | |
C:N | 2.26 | -0.012 | 0.097 | 0.003 | 88 | |
C:P | 3.04 | -0.007 | 0.034 | 0.167 | 58 |
表2 根系碳(C)、氮(N)、磷(P)含量及其计量比的纬度变化模式
Table 2 Latitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.74 | -0.002 | 0.102 | 0.070 | 33 |
N | -0.36 | 0.009 | 0.133 | <0.001 | 146 | |
P | -1.54 | 0.013 | 0.097 | <0.001 | 123 | |
N:P | 1.21 | -0.005 | 0.016 | 0.161 | 123 | |
C:N | 2.20 | -0.015 | 0.259 | 0.003 | 33 | |
C:P | 2.95 | -0.009 | 0.085 | 0.256 | 17 | |
粗根 Coarse root | C | 1.71 | -0.002 | 0.099 | 0.015 | 59 |
N | -0.21 | -0.003 | 0.006 | 0.316 | 182 | |
P | -1.45 | 0.005 | 0.020 | 0.084 | 149 | |
N:P | 1.37 | -0.012 | 0.095 | <0.001 | 149 | |
C:N | 2.13 | -0.004 | 0.015 | 0.373 | 55 | |
C:P | 2.89 | 0.001 | 0.001 | 0.863 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.71 | -0.002 | 0.081 | 0.006 | 92 |
N | -0.29 | 0.003 | 0.008 | 0.101 | 328 | |
P | -1.50 | 0.009 | 0.051 | <0.001 | 272 | |
N:P | 1.29 | -0.008 | 0.047 | <0.001 | 272 | |
C:N | 2.26 | -0.012 | 0.097 | 0.003 | 88 | |
C:P | 3.04 | -0.007 | 0.034 | 0.167 | 58 |
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.76 | -0.000 7 | 0.024 | 0.386 | 33 |
N | -0.60 | 0.004 5 | 0.028 | 0.042 | 146 | |
P | 0.35 | -0.013 0 | 0.059 | 0.007 | 123 | |
N:P | -0.46 | 0.013 4 | 0.078 | 0.002 | 123 | |
C:N | 2.44 | -0.006 3 | 0.098 | 0.075 | 33 | |
C:P | 2.15 | 0.004 7 | 0.037 | 0.462 | 17 | |
粗根 Coarse root | C | 1.81 | -0.001 3 | 0.097 | 0.016 | 59 |
N | -1.24 | 0.008 4 | 0.125 | <0.001 | 182 | |
P | -1.27 | -0.000 2 | <0.001 | 0.932 | 149 | |
N:P | 0.13 | 0.007 6 | 0.083 | <0.001 | 149 | |
C:N | 2.76 | -0.006 9 | 0.060 | 0.071 | 55 | |
C:P | 2.19 | 0.006 8 | 0.056 | 0.138 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.78 | -0.001 1 | 0.057 | 0.021 | 92 |
N | -1.13 | 0.008 2 | 0.090 | <0.001 | 328 | |
P | -0.94 | -0.002 5 | 0.005 | 0.232 | 272 | |
N:P | -0.01 | 0.009 0 | 0.077 | <0.001 | 272 | |
C:N | 2.80 | -0.008 2 | 0.084 | 0.006 | 88 | |
C:P | 2.24 | 0.005 6 | 0.033 | 0.172 | 58 |
表3 根系碳(C)、氮(N)、磷(P)含量及其计量比的经度变化模式
Table 3 Longitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots
因变量 Dependent variable | 截距 Intercept | 斜率 Slope | R2 | p | n | |
---|---|---|---|---|---|---|
细根 Fine root | C | 1.76 | -0.000 7 | 0.024 | 0.386 | 33 |
N | -0.60 | 0.004 5 | 0.028 | 0.042 | 146 | |
P | 0.35 | -0.013 0 | 0.059 | 0.007 | 123 | |
N:P | -0.46 | 0.013 4 | 0.078 | 0.002 | 123 | |
C:N | 2.44 | -0.006 3 | 0.098 | 0.075 | 33 | |
C:P | 2.15 | 0.004 7 | 0.037 | 0.462 | 17 | |
粗根 Coarse root | C | 1.81 | -0.001 3 | 0.097 | 0.016 | 59 |
N | -1.24 | 0.008 4 | 0.125 | <0.001 | 182 | |
P | -1.27 | -0.000 2 | <0.001 | 0.932 | 149 | |
N:P | 0.13 | 0.007 6 | 0.083 | <0.001 | 149 | |
C:N | 2.76 | -0.006 9 | 0.060 | 0.071 | 55 | |
C:P | 2.19 | 0.006 8 | 0.056 | 0.138 | 41 | |
细根+粗根 Fine root + coarse root | C | 1.78 | -0.001 1 | 0.057 | 0.021 | 92 |
N | -1.13 | 0.008 2 | 0.090 | <0.001 | 328 | |
P | -0.94 | -0.002 5 | 0.005 | 0.232 | 272 | |
N:P | -0.01 | 0.009 0 | 0.077 | <0.001 | 272 | |
C:N | 2.80 | -0.008 2 | 0.084 | 0.006 | 88 | |
C:P | 2.24 | 0.005 6 | 0.033 | 0.172 | 58 |
N | P | ||||||
---|---|---|---|---|---|---|---|
斜率 Slope | R2 | n | 斜率 Slope | R2 | n | ||
年平均气温 MAT | -6.8E-3 | 0.105*** | 146 | -8.3E-3 | 0.056** | 123 | |
年降水量 MAP | -8.4E-5 | 0.061** | 146 | -1.6E-4 | 0.077** | 123 | |
年平均气温+年降水量 MAT + MAP | 0.109*** | 146 | 0.077** | 123 | |||
土壤N Soil N | 0.17 | 0.112** | 80 | ||||
土壤P Soil P | 0.36 | 0.154** | 65 | ||||
气候+土壤N Climate + soil N | 0.154** | 80 | |||||
气候+土壤P Climate + soil P | 0.250** | 65 |
表4 细根氮(N)、磷(P)含量及其影响因子的线性回归关系
Table 4 Linear regression relationship between fine root nitrogen (N) and phosphorus (P) contents and the influencing factors
N | P | ||||||
---|---|---|---|---|---|---|---|
斜率 Slope | R2 | n | 斜率 Slope | R2 | n | ||
年平均气温 MAT | -6.8E-3 | 0.105*** | 146 | -8.3E-3 | 0.056** | 123 | |
年降水量 MAP | -8.4E-5 | 0.061** | 146 | -1.6E-4 | 0.077** | 123 | |
年平均气温+年降水量 MAT + MAP | 0.109*** | 146 | 0.077** | 123 | |||
土壤N Soil N | 0.17 | 0.112** | 80 | ||||
土壤P Soil P | 0.36 | 0.154** | 65 | ||||
气候+土壤N Climate + soil N | 0.154** | 80 | |||||
气候+土壤P Climate + soil P | 0.250** | 65 |
年平均气温 MAT | 年降水量 MAP | 土壤N Soil N | 土壤P Soil P | n | R2 | p | |
---|---|---|---|---|---|---|---|
细根N Fine root N | -0.047 | -0.106 | 0.283 | 80 | 0.154 | 0.005 | |
细根P Fine root P | -0.336 | 0.228 | 0.419 | 65 | 0.250 | 0.001 | |
细根N Fine root N | -0.226 | 0.062 | 146 | 0.109 | <0.001 | ||
细根P Fine root P | -0.008 | -0.147 | 123 | 0.077 | 0.008 |
表5 细根氮(N)、磷(P)含量各影响因子偏相关系数表
Table 5 Table of partial correlation coefficients of factors influencing fine root nitrogen (N) and phosphorus (P) contents
年平均气温 MAT | 年降水量 MAP | 土壤N Soil N | 土壤P Soil P | n | R2 | p | |
---|---|---|---|---|---|---|---|
细根N Fine root N | -0.047 | -0.106 | 0.283 | 80 | 0.154 | 0.005 | |
细根P Fine root P | -0.336 | 0.228 | 0.419 | 65 | 0.250 | 0.001 | |
细根N Fine root N | -0.226 | 0.062 | 146 | 0.109 | <0.001 | ||
细根P Fine root P | -0.008 | -0.147 | 123 | 0.077 | 0.008 |
1 | Ågren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations.Ecology Letters, 7, 185-191. |
2 | Beyer F, Hertel D, Leuschner C (2013). Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition.Plant and Soil, 373, 143-156. |
3 | Bloom AJ, Chapin F III, Mooney HA (1985). Resource limitation in plants: An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392. |
4 | Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests.Oecologia, 125, 389-399. |
5 | Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development.Nature, 397, 491-497. |
6 | Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii.Ecology, 76, 1407-1424. |
7 | Dipesh KC, Schuler JL (2013). Estimating fine-root production and mortality in the biomass plantations.Communications in Soil Science and Plant Analysis, 44, 2514-2523. |
8 | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan.Advances in Ecological Research, 27, 1-60. |
9 | Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes.Bioscience, 46, 674-684. |
10 | Elser JJ, Sterner RW, Corokhova E, Fngan WF, Markow TA, Conter JB, Hanrrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
11 | Foulds W (1993). Nutrient concentrations of foliage and soil in South-western Australia.New Phytologist, 125, 529-546. |
12 | Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia, 175, 445-455. |
13 | Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots.Ecology, 81, 275-280. |
14 | Guo LB, Halliday MJ, Gifford RM (2006). Fine root decomposition under grass and pine seedlings in controlled environmental conditions.Applied Soil Ecology, 33, 22-29. |
15 | Han WX, Fang JX, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
16 | Hao YR, Peng SL (2009). Roots of different dominant tree species in zonal vegetation in southern subtropical China.Journal of Beijing Forestry University, 31(2), 25-30.(in Chinese with English abstract) |
[郝艳茹, 彭少麟 (2009). 南亚热带地带性植被优势树种根系的研究, 北京林业大学学报, 31(2), 25-30.] | |
17 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
18 | Hedin LO, Vitousek PM, Matson PA (2003). Nutrient losses over four million years of tropical forest development.Ecology, 84, 2231-2255. |
19 | Hendrick RL, Pregitzer KS (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems.Canadian Journal of Forest Research, 23, 2507-2520. |
20 | Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems.Ecosystems, 3, 57-69. |
21 | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
22 | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary production.Global Ecology and Biogeography Letters, 14, 585-598. |
23 | Kitajima K, Anderson KE, Allen MF (2010). Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem.Journal of Geophysical Research, 115, G04032, doi: 10.1029/2009JG001210. |
24 | Kochsiek A, Tan S, Russo SE (2013). Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils.Plant Ecology, 214, 869-882. |
25 | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
26 | Korner C, Diemer M (1987). In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude.Functional Ecology, 1, 179-194. |
27 | Lin CF, Yang YS, Guo JF, Chen GS, Xie JS (2011). Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: Dynamics of dry mass, nutrient and organic fractions.Plant and Soil, 338, 311-327. |
28 | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
29 | Lu HZ, Sha LQ (2009). A decomposition dynamics study of different-size roots between a tropical rainforest and a rubber plantation in Xishuangbanna, Yunnan, SW China. Journal of Yunnan University (Natural Science Edition), 31, 528-533.(in Chinese with English abstract) |
[卢华正, 沙丽清 (2009). 西双版纳热带季节雨林与橡胶林不同径级根分解. 云南大学学报(自然科学版), 31, 528-533.] | |
30 | Makino W, Cotner JB (2004). Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: Implications for growth- and resource-dependent variations.Aquatic Microbial Ecology, 34, 33-41. |
31 | Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata.Tree Physiology, 29, 579-585. |
32 | McCormack ML, Guo DL (2014). Impacts of environmental factors on fine root lifespan.Frontiers in Plant Science, 5, 205. |
33 | Montagnoli A, Terzaghi M, Iorio AD, Stefania G, Scippa S, Chiatante D (2012). Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy.Ecological Research, 27, 1015-1025. |
34 | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
35 | Odum HT, Pinkerton RC (1955). Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems.The American Naturalist, 43, 331-343. |
36 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
37 | Ruess RW, Hendriek RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska.Ecological Monographs, 73, 643-662. |
38 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. 145-177. |
39 | Sun T, Mao ZJ, Han YY (2013). Slow decomposition of very fine roots and some factors controlling the process: A 4-year experiment in four temperate tree species.Plant and Soil, 372, 445-458. |
40 | Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species.Plant, Cell & Environment, 22, 767-778. |
41 | Trumbore SE, Gaudinski JB (2003). The secret lives of roots.Science, 302, 1344-1345. |
42 | Uriankhai T, Liu MS, Huang Z, Chen B, Zhang MJ, Xu C (2009). Distribution pattern of root biomass and inter- specific relationship in Achnatherum splendens-sophora alopecuroides community in Northwest China.Chinese Journal of Plant Ecology, 33, 748-754.(in Chinese with English abstract) |
[晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰 (2009). 我国西北地区芨芨草-苦豆子群落根系分布与种间关系. 植物生态学报, 33, 748-754.] | |
43 | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests.Advances in Ecological Research, 15, 303-377. |
44 | Wang QC (2004). Fine roots responses of manchurian ash and Korean larch to soil nutrients heterogeneity. PhD dissertation, College of Forestry, Northeast Forestry University, Harbin.(in Chinese) |
[王庆成 (2004). 水曲柳落叶松细根对土壤养分空间异质性的反应. 博士学位论文, 东北林业大学林学院, 哈尔滨.] | |
45 | Weih M, Karlsson PS (2001). Growth response of mountain birch to air and soil temperature: Is increasing leaf-nitro- gen content an acclimation to lower air temperature?New Phytologist, 150, 147-155. |
46 | Wilcox CS, Ferguson JW, Fernandez GCJ, Nowak RS (2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite.Journal of Arid Environments, 56, 129-148. |
47 | Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003). Temperature and the chemical composition of poikilothermic organisms.Functional Ecology, 17, 237-245. |
48 | Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. |
49 | Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344. |
50 | Zhang XQ, Wu KH (2001). Fine-root production and turnover for forest ecosystems.Scientia Silvae Sinicae, 37(3), 126-138. |
[张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学, 37(3), 126-138.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[5] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[6] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[7] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[8] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[9] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[10] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[11] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[12] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[13] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[14] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[15] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19