Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (8): 1071-1081.DOI: 10.17521/cjpe.2022.0097
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
ZHAO Yan-Chao1,2, CHEN Li-Tong1,*()
Received:
2022-03-17
Accepted:
2022-07-06
Online:
2023-08-20
Published:
2022-09-06
Contact:
*CHEN Li-Tong(Supported by:
ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau[J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0097
处理 Treatment | df | F | p |
---|---|---|---|
N | 1 | 33.18 | <0.001 |
P | 1 | 2.56 | 0.114 |
N × P | 1 | 1.97 | 0.167 |
W | 1 | 51.60 | <0.001 |
W × N | 1 | 1.51 | 0.223 |
W × P | 1 | 2.35 | 0.130 |
W × N × P | 1 | 1.28 | 0.261 |
Altitude | 2 | 213.74 | <0.001 |
Altitude × W | 2 | 11.73 | <0.001 |
Altitude × N | 2 | 0.28 | 0.756 |
Altitude × P | 2 | 1.55 | 0.219 |
Altitude × N × P | 2 | 0.24 | 0.787 |
Altitude × W × N | 2 | 0.17 | 0.841 |
Altitude × W × P | 2 | 2.55 | 0.085 |
Altitude × W × N × P | 2 | 0.57 | 0.566 |
Table 1 Results of linear mixed model on the effects of altitude, warming, fertilizer and their interactions on aboveground biomass in alpine grassland of Haibei, Qinghai
处理 Treatment | df | F | p |
---|---|---|---|
N | 1 | 33.18 | <0.001 |
P | 1 | 2.56 | 0.114 |
N × P | 1 | 1.97 | 0.167 |
W | 1 | 51.60 | <0.001 |
W × N | 1 | 1.51 | 0.223 |
W × P | 1 | 2.35 | 0.130 |
W × N × P | 1 | 1.28 | 0.261 |
Altitude | 2 | 213.74 | <0.001 |
Altitude × W | 2 | 11.73 | <0.001 |
Altitude × N | 2 | 0.28 | 0.756 |
Altitude × P | 2 | 1.55 | 0.219 |
Altitude × N × P | 2 | 0.24 | 0.787 |
Altitude × W × N | 2 | 0.17 | 0.841 |
Altitude × W × P | 2 | 2.55 | 0.085 |
Altitude × W × N × P | 2 | 0.57 | 0.566 |
Fig. 2 Relationships between response ratio and altitude in 2021 in alpine grassland of Haibei, Qinghai. ○, no treatment; □, nitrogen (N) addition; ◇, phosphorus (P) addition; △, combination of N and P addition; White color, CK; black color, warming. Fitted line in the parent figure represents the relationship between the response ratios of the eight treatments and elevation (p < 0.05, R2 = 0.06), and the fitted line in the upper left subplot represents the relationship between the warming and altitude (p < 0.05, R2 = 0.39).
Fig. 3 Influence of warming, nitrogen and phosphorus addition and their interaction on aboveground biomass of altitude 3 200 m (A), 3 700 m (B) and 4 050 m (C) in alpine grassland of Haibei, Qinghai. CK, no treatment; N, nitrogen addition; NP, combination of nitrogen and phosphorus addition; P, phosphorus addition. *, p < 0.05; **, p < 0.01.
处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
N | 1 | 24.21 | <0.001 | 15.61 | <0.001 | 6.84 | <0.05 |
P | 1 | 6.32 | <0.05 | 0.03 | 0.860 | 0.80 | 0.381 |
N × P | 1 | 1.79 | 0.193 | 1.89 | 0.182 | 0.26 | 0.612 |
W | 1 | 0.75 | 0.395 | 81.63 | <0.001 | 13.57 | <0.01 |
W × N | 1 | 1.95 | 0.176 | 3.58 | 0.070 | 0.27 | 0.605 |
W × P | 1 | 2.30 | 0.142 | 8.10 | <0.01 | 0.28 | 0.600 |
W × N × P | 1 | 0.08 | 0.776 | 0.90 | 0.353 | 1.75 | 0.198 |
Table 2 Results of linear mixed model on the effects of warming, fertilizer and their interactions on aboveground biomass of three altitudes in alpine grassland of Haibei, Qinghai
处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
N | 1 | 24.21 | <0.001 | 15.61 | <0.001 | 6.84 | <0.05 |
P | 1 | 6.32 | <0.05 | 0.03 | 0.860 | 0.80 | 0.381 |
N × P | 1 | 1.79 | 0.193 | 1.89 | 0.182 | 0.26 | 0.612 |
W | 1 | 0.75 | 0.395 | 81.63 | <0.001 | 13.57 | <0.01 |
W × N | 1 | 1.95 | 0.176 | 3.58 | 0.070 | 0.27 | 0.605 |
W × P | 1 | 2.30 | 0.142 | 8.10 | <0.01 | 0.28 | 0.600 |
W × N × P | 1 | 0.08 | 0.776 | 0.90 | 0.353 | 1.75 | 0.198 |
Fig. 4 Effects of warming, nitrogen and phosphorus addition and their interaction on the relative biomass of different plant functional groups of three altitudes in alpine grassland of Haibei, Qinghai. CK, no treatment; N, nitrogen addition; NP, combination of nitrogen and phosphorus addition; P, phosphorus addition. *, p < 0.05; ***, p < 0.001.
功能群 Functional group | 处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
豆科 Legume | N | 1 | 22.10 | <0.001 | 2.00 | 0.172 | 3.79 | 0.065 |
P | 1 | <0.01 | 0.971 | <0.01 | 0.977 | 1.01 | 0.327 | |
N × P | 1 | 1.21 | 0.282 | 1.23 | 0.279 | 2.11 | 0.160 | |
W | 1 | 0.73 | 0.400 | 0.25 | 0.620 | 0.13 | 0.726 | |
W × N | 1 | 0.39 | 0.539 | 2.48 | 0.130 | 0.001 | 0.974 | |
W × P | 1 | 1.53 | 0.229 | 0.01 | 0.927 | 0.59 | 0.450 | |
W × N × P | 1 | 0.96 | 0.336 | 3.35 | 0.081 | <0.01 | 0.986 | |
禾草 Grass | N | 1 | 9.83 | <0.01 | 3.46 | 0.077 | 2.44 | 0.133 |
P | 1 | 1.27 | 0.272 | 1.07 | 0.312 | 7.17 | <0.05 | |
N × P | 1 | 14.03 | <0.01 | 0.01 | 0.937 | 3.12 | 0.092 | |
W | 1 | 0.62 | 0.441 | 10.86 | <0.01 | 8.85 | <0.01 | |
W × N | 1 | 1.86 | 0.187 | 5.14 | <0.05 | 2.45 | 0.133 | |
W × P | 1 | 0.11 | 0.744 | 0.20 | 0.656 | 0.07 | 0.793 | |
W × N × P | 1 | 1.22 | 0.282 | 1.01 | 0.325 | 0.49 | 0.493 | |
莎草 Sedge | N | 1 | 0.59 | 0.449 | 0.09 | 0.769 | 0.28 | 0.603 |
P | 1 | 17.14 | <0.001 | 0.27 | 0.607 | 20.59 | <0.001 | |
N × P | 1 | 0.81 | 0.377 | 0.34 | 0.566 | 1.06 | 0.314 | |
W | 1 | 0.04 | 0.837 | 4.95 | <0.05 | 12.81 | <0.01 | |
W × N | 1 | 2.00 | 0.171 | 0.05 | 0.833 | 0.78 | 0.387 | |
W × P | 1 | 1.24 | 0.276 | 0.78 | 0.387 | <0.01 | 0.988 | |
W × N × P | 1 | 0.11 | 0.739 | 0.85 | 0.367 | 1.52 | 0.231 | |
杂类草 Forb | N | 1 | 0.46 | 0.505 | 0.01 | 0.917 | <0.01 | 0.983 |
P | 1 | 0.22 | 0.645 | 5.63 | <0.05 | 4.52 | <0.05 | |
N × P | 1 | 0.43 | 0.521 | 0.03 | 0.874 | <0.01 | 0.977 | |
W | 1 | 0.67 | 0.422 | 0.59 | 0.450 | 0.20 | 0.660 | |
W × N | 1 | 1.74 | 0.202 | 0.07 | 0.798 | 0.02 | 0.899 | |
W × P | 1 | 0.34 | 0.567 | 0.54 | 0.469 | 0.12 | 0.734 | |
W × N × P | 1 | 0.80 | 0.381 | 0.70 | 0.411 | 0.32 | 0.576 |
Table 3 Effects of warming, nitrogen and phosphorus addition on the relative biomass of different functional groups on three altitudes in alpine grassland of Haibei, Qinghai
功能群 Functional group | 处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
豆科 Legume | N | 1 | 22.10 | <0.001 | 2.00 | 0.172 | 3.79 | 0.065 |
P | 1 | <0.01 | 0.971 | <0.01 | 0.977 | 1.01 | 0.327 | |
N × P | 1 | 1.21 | 0.282 | 1.23 | 0.279 | 2.11 | 0.160 | |
W | 1 | 0.73 | 0.400 | 0.25 | 0.620 | 0.13 | 0.726 | |
W × N | 1 | 0.39 | 0.539 | 2.48 | 0.130 | 0.001 | 0.974 | |
W × P | 1 | 1.53 | 0.229 | 0.01 | 0.927 | 0.59 | 0.450 | |
W × N × P | 1 | 0.96 | 0.336 | 3.35 | 0.081 | <0.01 | 0.986 | |
禾草 Grass | N | 1 | 9.83 | <0.01 | 3.46 | 0.077 | 2.44 | 0.133 |
P | 1 | 1.27 | 0.272 | 1.07 | 0.312 | 7.17 | <0.05 | |
N × P | 1 | 14.03 | <0.01 | 0.01 | 0.937 | 3.12 | 0.092 | |
W | 1 | 0.62 | 0.441 | 10.86 | <0.01 | 8.85 | <0.01 | |
W × N | 1 | 1.86 | 0.187 | 5.14 | <0.05 | 2.45 | 0.133 | |
W × P | 1 | 0.11 | 0.744 | 0.20 | 0.656 | 0.07 | 0.793 | |
W × N × P | 1 | 1.22 | 0.282 | 1.01 | 0.325 | 0.49 | 0.493 | |
莎草 Sedge | N | 1 | 0.59 | 0.449 | 0.09 | 0.769 | 0.28 | 0.603 |
P | 1 | 17.14 | <0.001 | 0.27 | 0.607 | 20.59 | <0.001 | |
N × P | 1 | 0.81 | 0.377 | 0.34 | 0.566 | 1.06 | 0.314 | |
W | 1 | 0.04 | 0.837 | 4.95 | <0.05 | 12.81 | <0.01 | |
W × N | 1 | 2.00 | 0.171 | 0.05 | 0.833 | 0.78 | 0.387 | |
W × P | 1 | 1.24 | 0.276 | 0.78 | 0.387 | <0.01 | 0.988 | |
W × N × P | 1 | 0.11 | 0.739 | 0.85 | 0.367 | 1.52 | 0.231 | |
杂类草 Forb | N | 1 | 0.46 | 0.505 | 0.01 | 0.917 | <0.01 | 0.983 |
P | 1 | 0.22 | 0.645 | 5.63 | <0.05 | 4.52 | <0.05 | |
N × P | 1 | 0.43 | 0.521 | 0.03 | 0.874 | <0.01 | 0.977 | |
W | 1 | 0.67 | 0.422 | 0.59 | 0.450 | 0.20 | 0.660 | |
W × N | 1 | 1.74 | 0.202 | 0.07 | 0.798 | 0.02 | 0.899 | |
W × P | 1 | 0.34 | 0.567 | 0.54 | 0.469 | 0.12 | 0.734 | |
W × N × P | 1 | 0.80 | 0.381 | 0.70 | 0.411 | 0.32 | 0.576 |
[1] | Bahn M, Körner C (2003). Recent increases in summit flora caused by warming in the Alps//Nagy L, Grabherr G, Körner C, Thompson DBA. Alpine Biodiversity in Europe. Ecological Studies: Vol. 167. Springer, Berlin. |
[2] |
Bai W, Wang GX, Xi JY, Liu YW, Yin PS (2019). Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. European Journal of Soil Biology, 92, 16-23.
DOI URL |
[3] |
Ceulemans T, Bodé S, Bollyn J, Harpole S, Coorevits K, Peeters G, van Acker K, Smolders E, Boeckx P, Honnay O (2017). Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nature Plants, 3, 16224. DOI: 10.1038/nplants.2016.224.
PMID |
[4] |
Chai X, Li YN, Duan C, Zhang T, Zong N, Shi PL, He YT, Zhang XZ (2018). CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 42, 6-19.
DOI URL |
[柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲 (2018). 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 42, 6-19.]
DOI |
|
[5] |
Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, et al. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI PMID |
[6] |
Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, Yang YH (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24, 1018-1028.
DOI PMID |
[7] | Dai LC, Ke X, Cao YF, Zhang FW, Du YG, Li YK, Guo XW, Li Q, Lin L, Ma JJ, Cao GM (2019). Allocation patterns of above- and belowground biomass and its response to meteorological factors on an alpine meadow in Qinghai-Tibet Plateau. Acta Ecologica Sinica, 39, 486-493. |
[戴黎聪, 柯浔, 曹莹芳, 张法伟, 杜岩功, 李以康, 郭小伟, 李茜, 林丽, 马建军, 曹广民 (2019). 青藏高原矮嵩草草甸地下和地上生物量分配格局及其与气象因子的关系. 生态学报, 39, 486-493.] | |
[8] |
Dusenge ME, Duarte AG, Way DA (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
DOI URL |
[9] |
Fu G, Sun W, Yu CQ, Zhang XZ, Shen ZX, Li YL, Yang PW, Zhou N (2015). Clipping alters the response of biomass production to experimental warming: a case study in an alpine meadow on the Tibetan Plateau, China. Journal of Mountain Science, 12, 935-942.
DOI URL |
[10] | Fu G, Zhang XZ, Zhang YJ, Shi PL, Li YL, Zhou YT, Yang PW, Shen ZX (2013). Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 7, 073505. DOI: 10.1117/1.JRS.7.073505. |
[11] |
Ganjurjav H, Gornish E, Hu G, Wu J, Wan Y, Li Y, Gao Q (2021). Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Ecology, 109, 1014-1025.
DOI URL |
[12] |
Hu G, Gao Q, Ganjurjav H, Wang Z, Luo W, Wu H, Li Y, Yan Y, Gornish ES, Schwartz MW, Wan Y, Li Y (2021). The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degradation & Development, 32, 4033-4041.
DOI URL |
[13] | Li HM, Ma YS, Wang YL (2010). Influences of climate warming on plant phenology in Qinghai Plateau. Journal of Applied Meteorological Science, 21, 500-505. |
[李红梅, 马玉寿, 王彦龙 (2010). 气候变暖对青海高原地区植物物候期的影响. 应用气象学报, 21, 500-505.] | |
[14] |
Li N, Wang GX, Yang Y, Gao YH, Liu GS (2011). Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology & Biochemistry, 43, 942-953.
DOI URL |
[15] |
Li XP, Wang L, Guo XY, Chen DL (2017). Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? International Journal of Climatology, 37, 1278-1284.
DOI URL |
[16] | Li Y, Lin L, Zhu WY, Zhang ZH, He JS (2017). Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 535-544. |
[李颖, 林笠, 朱文琰, 张振华, 贺金生 (2017). 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 53, 535-544.] | |
[17] | Li YN, Zhao L, Zhao XQ, Zhou HK (2004). Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 12, 236-239. |
[李英年, 赵亮, 赵新全, 周华坤 (2004). 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 12, 236-239.]
DOI |
|
[18] |
Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[19] |
Ma L, Zhang Q, Zhang ZH, Guo J, Yang XY, Zhou BR, Deng YF, Wang F, She YD, Zhou HK (2020). Effects of gradient warming on species diversity and biomass in alpine meadows. Acta Agrestia Sinica, 28, 1395-1402.
DOI |
[马丽, 张骞, 张中华, 郭婧, 杨晓渊, 周秉荣, 邓艳芳, 王芳, 佘延娣, 周华坤 (2020). 梯度增温对高寒草甸物种多样性和生物量的影响. 草地学报, 28, 1395-1402.]
DOI |
|
[20] | Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX (2010). Altitude gradient variation of plant characters and biomass allocation in alpine meadow of Qinghai-Tibet Plateau. Scientia Sinica (Vitae), 40, 533-543. |
[马维玲, 石培礼, 李文华, 何永涛, 张宪洲, 沈振西 (2010). 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异. 中国科学: 生命科学, 40, 533-543.] | |
[21] |
Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, Consortium I (2012). Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology, 21, 3729-3738.
DOI PMID |
[22] |
Nomoto HA, Alexander JM (2021). Drivers of local extinction risk in alpine plants under warming climate. Ecology Letters, 24, 1157-1166.
DOI PMID |
[23] |
Noyce GL, Kirwan ML, Rich RL, Megonigal JP (2019). Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 116, 21623-21628.
DOI PMID |
[24] | Pang XY, Lei JP, Wang A, Deng YP (2016). Response of plant community in subalpine meadow to climate change. Acta Botanica Boreali-Occidentalia Sinica, 36, 1678-1686. |
[庞晓瑜, 雷静品, 王奥, 邓云鹏 (2016). 亚高山草甸植物群落对气候变化的响应. 西北植物学报, 36, 1678-1686.] | |
[25] |
Pieper SJ, Loewen V, Gill M, Johnstone JF (2011). Plant responses to natural and experimental variations in temperature in alpine tundra, southern Yukon, Canada. Arctic, Antarctic, and Alpine Research, 43, 442-456.
DOI URL |
[26] |
Qiu J (2008). China: the third pole. Nature, 454, 393-396.
DOI |
[27] | Ren F, Song WM, Chen LT, Mi ZR, Zhang ZH, Zhu WY, Zhou HK, Cao GM, He JS (2016). Phosphorus does not alleviate the negative effect of nitrogen enrichment on legume performance in an alpine grassland. Journal of Plant Ecology, 10, 822-830. |
[28] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[29] |
Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann NE, Dullinger S (2018). Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 115, 1848-1853.
DOI PMID |
[30] |
Sierra J (1997). Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biology & Biochemistry, 29, 1557-1563.
DOI URL |
[31] |
Soethe N, Lehmann J, Engels C (2008). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology, 24, 397-406.
DOI URL |
[32] |
Sun J, Cheng GW, Li WP (2013). Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10, 1707-1715.
DOI URL |
[33] |
Tiwari P, Bhattacharya P, Rawat GS, Rai ID, Talukdar G (2021). Experimental warming increases ecosystem respiration by increasing above-ground respiration in alpine meadows of western Himalaya. Scientific Reports, 11, 2640. DOI: 10.1038/s41598-021-82065-y.
PMID |
[34] | Tognetti PM, Prober SM, Báez S, Chaneton EJ, Firn J, Risch AC, Schuetz M, Simonsen AK, Yahdjian L, Borer ET, Seabloom EW, Arnillas CA, Bakker JD, Brown CS, Cadotte MW, et al. (2021). Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023718118. DOI: 10.1073/pnas.2023718118. |
[35] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970. |
[36] |
Wang GX, Qian J, Cheng GD, Lai YM (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 291, 207-217.
PMID |
[37] |
Wang L, Yu H, Zhang Q, Xu Y, Tao Z, Alatalo JM, Dai J (2018). Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 28, 1953-1964.
DOI |
[38] |
Wang Z, Luo TX, Li RC, Tang YH, Du MY (2013). Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. Journal of Vegetation Science, 24, 189-201.
DOI URL |
[39] |
Wen J, Qin RM, Zhang SX, Yang XY, Xu MH (2020). Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China. Journal of Arid Land, 12, 252-266.
DOI |
[40] |
Winkler DE, Chapin KJ, Kueppers LM (2016). Soil moisture mediates alpine life form and community productivity responses to warming. Ecology, 97, 1553-1563.
DOI PMID |
[41] | Wu HB, Guo ZT, Peng CH (2003). Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles, 17, 1048. DOI: 10.1029/2001GB001844. |
[42] |
Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[43] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[44] | Yang YJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Yu XC, Zhao XQ, Zhang H (2015). Effects of long-term simulated warming on soil physicochemical properties and plant chemical components of Kobresia humilis meadow. Chinese Journal of Ecology, 34, 781-789. |
[杨月娟, 周华坤, 姚步青, 王文颖, 董世魁, 余欣超, 赵新全, 张灏 (2015). 长期模拟增温对矮嵩草草甸土壤理化性质与植物化学成分的影响. 生态学杂志, 34, 781-789.] | |
[45] | Yang ZL, Zhang JY, Chu LL, Li H, Xiao R (2012). Effects of fertilization and mowing on community biomass compensation in eastern alpine meadow of Tibetan Plateau. Chinese Journal of Ecology, 31, 2276-2282. |
[杨中领, 张家洋, 楚莉莉, 李慧, 肖蕊 (2012). 施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响. 生态学杂志, 31, 2276-2282.] | |
[46] |
Yao JQ, Yang Q, Mao WY, Zhao Y, Xu XB (2016). Precipitation trend-elevation relationship in arid regions of the China. Global and Planetary Change, 143, 1-9.
DOI URL |
[47] | You Q, Cai Z, Pepin N, Chen D, Ahrens B, Jiang Z, Wu F, Kang S, Zhang R, Wu T, Wang P, Li M, Zuo Z, Gao Y, Zhai P, Zhang Y (2021). Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences. Earth-Science Reviews, 217, 103625. DOI: 10.1016/j.earscirev.2021.103625. |
[48] | You Q, Chen D, Wu F, Pepin N, Cai Z, Ahrens B, Jiang Z, Wu Z, Kang S, AghaKouchak A (2020). Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives. Earth-Science Reviews, 210, 103349. DOI: 10.1016/j.earscirev.2020.103349. |
[49] | Zhang RY, Shi XM, Li WJ, Wang G, Guo R (2016). Effects of nitrogen and phosphorus addition on the plant aboveground biomass on a sub-alpine meadow. Ecological Science, 35(5), 15-20. |
[张仁懿, 史小明, 李文金, 王刚, 郭睿 (2016). 氮、磷添加对亚高寒草甸地上生物量的影响. 生态科学, 35(5), 15-20.] | |
[50] |
Zhao L, Cheng GD, Li SX, Zhao XM, Wang SL (2000). Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 45, 2181-2187.
DOI URL |
[51] |
Zhou J, Li XL, Peng F, Li C, Lai C, You Q, Xue X, Wu Y, Sun H, Chen Y, Zhong H, Lambers H (2021). Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 27, 6578-6591.
DOI PMID |
[52] |
Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
DOI URL |
[朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
DOI |
|
[53] | Zi HB, Ade LJ, Ma L, Hu L, Chen Y, Yang YF, Wang CT (2016). Change of ratio of root to soil and soil nutrient content at different grassland types in alpine meadow. Southwest China Journal of Agricultural Sciences, 29, 2916-2921. |
[字洪标, 阿的鲁骥, 马力, 胡雷, 陈焱, 杨有芳, 王长庭 (2016). 高寒草甸不同类型草地群落根土比、土壤养分变化. 西南农业学报, 29, 2916-2921.] | |
[54] |
Zong N, Duan C, Geng SB, Chai X, Shi PL, He YT (2018). Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chinese Journal of Applied Ecology, 29, 59-67.
DOI |
[宗宁, 段呈, 耿守保, 柴曦, 石培礼, 何永涛 (2018). 增温施氮对高寒草甸生产力及生物量分配的影响. 应用生态学报, 29, 59-67.]
DOI |
|
[55] |
Zong N, Shi PL, Zhao GS, Zheng LL, Niu B, Zhou TC, Hou G (2021). Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the northern Xizang Plateau. Chinese Journal of Plant Ecology, 45, 444-455.
DOI URL |
[宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁 (2021). 降水量变化对藏北高寒草地养分限制的影响. 植物生态学报, 45, 444-455.] |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[5] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[6] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[7] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[8] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[9] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[10] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[11] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[12] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[13] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[14] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[15] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn